

52nd IEA-FBC meeting, Wien, May 20 2006

Mineral transformations in biomass combustion

Johan Werkelin¹, Daniel Lindberg¹, Dan Boström², Bengt-Johan Skrifvars¹, Mikko Hupa¹

- ¹ Åbo Akademi Process Chemistry Centre
- ² Umeå University ETPC

Introduction and Background

- Biomass in Scandinavia includes logging residue (tree top and branches)
- Utilized in large-scale FBC with simultatious power production
- Ash-related problems in large-scale units: fouling, slagging and corrosion of furnace equipment.

Ash formation mechanisms

Mineral transformation/Ash formation

- Hypothesis 1: Global equilibrium
 - ash species predicted by global equilibrium
 - homogeneous fuel and indefinite reaction time
- Hypothesis 2: Locally global equilibrium
 - global equilibrium for each fuel particle
 - inhomogeneous fuel and indefinite reaction time
- Hypothesis 3: No equilibrium reached
 - ash-forming matter transforms slowly
 - inhomogeneous fuels and limited reaction time

Objectives

- Model the equilibrium ash chemistry of individual fuel particles
- Validate the results experimentally by measuring the ash chemistry after ashing
- Determine the chemical forms of the ashforming matter by low temperature ashing
- Discuss the transformation of fuel minerals to equilibrium ash species

Method

Modelling:

- Multiphase Chemical Equillibrium Calculation
- Phases present at chemical equillibrium

Measuring:

- Ashing in laboratory oven at 1000°C, 4 h
 - SEM-EDXA
 - PXRD
- Low-temperature ashing
 PXRD

Three samples of Spruce: bark, needles and shoots

Contents of ash-forming elements

mg/kg D.S.	Bark	Needles	Shoots
Si	171	6640	300
Ca	8350	8030	1670
Mg	865	1050	907
Mn	714	1390	245
Κ	2030	4270	14600
Ρ	452	1540	3830
S	367	704	1320
Cl	260	504	1090

Equilibrium bark ash 600 - 1200°C

Bark ash 1000°C

Bark ash 1000°C

Ca

S

Needle equilibrium ash (g/kg fuel)

 $(K,Na)_{2}(CO_{3},SO_{4})(ss)$ 3.23 of which is K_2SO_4 99% $Ca_{5}(PO_{4})_{3}OH(s)$ 8.33 (Ca,Mg,Fe)SiO₃(ss) 8.89 of which is CaSiO₃ 98% $CaMgSi_{2}O_{6}(s)$ 8.94 Oxide/Silicate Melt 7.39 of which is SiO₂ 62% of which is K_2O 35%

Needle ash 1000°C

Needle ash 1000°C K

K+Si

Shoot equilibrium ash (g/kg fuel)

 $(K,Na)_{2}(CO_{3},SO_{4})(ss)$ 4.23of which is K_2SO_4 99% $Ca_{5}(PO_{4})_{3}OH(s)$ 4.19 $K_{3}PO_{4}(s)$ 20.94(Ca,Mg,Mn,Fe)O(ss) 0.7386% of which is MgO of which is MnO 14% 0.23 $Mn_3O_4(s)$ $Mg_{2}SiO_{4}(s)$ 1.50

Shoot ash 1000°C

Κ

K+P

Ρ

Conclusions

- Single particle ash chemistry modelled
- Equilibrium phases detected in 1000°C ash
- Whewellite found in low-temperature ashes
- Originally weddellite: CaC₂O₄·2H₂O(s), that transforms differently depending on surrounding and form following main species:
 - In bark: CaO (lime)
 - In needles: CaSiO₃ (wollastonite) and
 - In shoots: CaKPO₄.

Acknowledgements

Andritz Oy, Foster Wheeler Energia Oy, International Paper Inc., Kværner Power Oy, Metsä-Botnia Ab, Vattenfall Utveckling Ab, TEKES, GSCE