SINGLE PARTICLE MODEL FOR CHAR CARBON AND CHAR NITROGEN OXIDATION

PARAMETRIC STUDIES AND COMPARISONS WITH EXPERIMENTAL RESULTS

Jukka Konttinen*, Pia Kilpinen*, Sirpa Kallio⁺ Åbo Akademi University *Process Chemistry Group c/o Combustion and Materials research ⁺Heat Engineering Laboratory Lemminkäisenkatu 14-18 B FIN-20520 Turku, Finland

NO and N₂O Emission Tendency Predictor for Fluidized Bed Combustion of Solid Fossil Fuels

- CFBC technology has been established as reliable, environmentally friendly and flexible means of energy production
- the objectives of the project have been:
 - to create a general mathematical tool for studying the emission formation in a CFBC
 - to rank the different fuels and fuel mixtures according to their emission formation tendency for nitrogen oxides
- The project has been part of the CODE Technology programme of Finland. The CODE programme is coordinated by TEKES. The project was also a part of an ECSC project funded by the European community

Simplified overview of gaseous emissions' dependence on various process parameters in CFBC

The CFBC model

- The model is based on a 1.5-dimensional description of CFBC hydrodynamics. It compasses the entire circulation loop.
- The model uses detailed homogeneous and heterogeneous chemical kinetics for main combustion and nitrogen reactions:
 - About 300 elementary gas-phase reactions
 - An oxidation model for single char particles

Schematic of detailed CFBC emission model at Åbo Akademi University

a) General model structure

b) Calculation cells and flows

Simplified mechanism according to Goel (1996) and de Soete (1999)

Single Particle Char Oxidation Model

 $k_g = \frac{D_f Sh}{2R}$ $Sh = 2.0 + 0.68 \cdot Re^{\frac{1}{2}} \cdot Sc^{\frac{1}{3}}$ $Sc = \frac{\mu_f}{\rho_f D_f}$ $Re = \frac{\mu_{slip} \cdot \rho_f \cdot 2R}{\mu_f}$

• solves diffusive mass transport and chemical kinetics in a shrinking char sphere:

$$D_{p,i} \cdot \left(\frac{\partial^2 [i]}{\partial r^2} + \frac{2}{r} \frac{\partial [i]}{\partial r}\right) + R_i = 0$$

$$\begin{cases} r = 0 \quad \frac{\partial [i]}{\partial r} \Big|_{center} = 0 \\ r = R \quad D_{p,i} \cdot \frac{\partial [i]}{\partial r} \Big|_{surface} = k_g \cdot \left([i]_{\infty} - [i]_s\right) \end{cases}$$

The reaction rate expressions of the char particle model

$$\begin{split} R_{O_2} &: \quad -\frac{1}{2} k_{O_2} [O_2] - \frac{1}{2} k_{CO} [CO] [O_2]^{\frac{1}{2}} \\ R_{CO} &: \quad k_{O_2} [O_2] - k_{CO} [CO] [O_2]^{\frac{1}{2}} \\ R_{O_2} &: \quad k_{CO} [CO] [O_2]^{\frac{1}{2}} \\ R_{NO} &: \quad \frac{N}{C} k_{O_2} [O_2] \left(\frac{k_1}{k_1 + k_2 [NO]} \right) - k_{NO} [NO] - k_{NO-CO} [NO] [CO] \\ &\quad -\frac{N}{C} k_{O_2} [O_2] \left(\frac{k_2 [NO]}{k_1 + k_2 [NO]} \right) \\ R_{N_2O} &: \quad \frac{N}{C} k_{O_2} [O_2] \left(\frac{k_2 [NO]}{k_1 + k_2 [NO]} \right) - k_{N_2O} [N_2O] \end{split}$$

Parameter determination for the single particle model

- Goel (1996) determined the 2*6 kinetic parameters and D_e for bituminous Newlands coal under a limited set of experimental conditions (1023 K, 1073 K and 1123 K, 4 vol % and 8 vol % O_2)
- model predictions with the original parameters do not fit well enough the experimental results of Tullin (1995) at different temperatures
 also, the high NO reduction rates in a large-scale CFBC are not well predicted
- A better set of kinetic parameters (KKK_1) have been determined by:
 using the small-scale fluidized bed combustion experimental data of Tullin (1995)

Single particle model performance with the new kinetic parameters

- the char carbon combustion rates at different temperatures of Tullin (1995) are well predicted *)
- the trends of char-nitrogen conversion to NO and N₂O at different temperatures (Tullin, 1995) are correctly predicted *)
 - *) these results are presented in the proceedings of the 40th IEA-FBC meeting in Turku, Finland, May 24-25, 2000
- the recent literature indicates that the reaction mechanism consisting of 15 steps (7 net reactions) is too simple and should be improved for better predictions

Å_

Char-nitrogen combustion in 21 vol % O_2

Conclusions

- Single particle model is used as an important submodel of the 1.5 dimensional CFBC model
 - the heterogeneous chemistry on the formation and reduction of NO_x and N_2O is described by the model
 - the internal and external mass transfer effects of particles of different size are described by the model
- The kinetic parameters of the model were refitted based on fluidized bed data on different scales.
 - the temperature trends of char carbon and char nitrogen oxidation are correctly predicted
 - significant differences in the model performance can be observed, when comparing the results with Goel (1994) parameters and KKK_1 parameters

Conclusions

- The recent literature indicates that the reaction mechanism consisting of 15 steps (7 net reactions) is too simple and should be improved for better predictions
- Under the simulated combustion conditions, film mass transfer has an effect to particles of larger than 0.1 mm in radius
- Chemical reaction controls the reaction rate with very small particles
 - with the most relevant particle sizes, both chemical reaction and mass transfer effects affect the reaction rate

Conclusions

• Some simulation results by the model indicate that the experimental conditions in the literature used in determination of the kinetic parameters for N_2O formation/destruction may have suffered from diffusional resistances.