
Pre-pilot Plant Studies 
on

Fluidized Combustion of Liquid Fuels” 

F. Miccio1, M. Miccio2 and G. Olivieri1,2

1Istituto Ricerche Combustione – CNR, Via Metastasio 17, 80125 Napoli, Italy
2Dipartimento di Ingegneria Chimica ed Alimentare, Via Ponte don Melillo, 84084 Fisciano (SA) Italy

41st IEA – FBC Meeting, Fisciano (Italy), 30-31 October 2000



• Fluidized Bed Combustion of conventional liquid fuels (i.e. 
commercial products of oil refining) is possible (Barker and 
Beacham, 1980), but still not appealing from an economic 
point of view. 

• Its application, however, as a “ultra-clean” or “mild 
combustion” technology  may prompt newer interest.

FLUIDIZED COMBUSTION 
OF 

CONVENTIONAL PETROLUM-DERIVED FUEL



OBJECTIVES OF THIS WORK

• to check feasibility and significance of bubbling bed
combustion of gasoil on a pre-pilot scale plant (FBR370).

• to investigate extension of stationary combustion to 
temperature < 850°C.

• to understand and to describe the fluidized bed
combustion mechanism of gasoil at medium-to low 
temperatures.
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FBR370

Nominal air excess factor = 1.3

d0 = 2÷4 mm

u0 = 20÷240 m/s

Dt = 370 mm

dp = 725 µµµµm

Heb= 600÷900 mm

Tbed = 650÷850 °C

Bed operating conditions

Injection condition

U-Umf = 0.5 m/s



Experimental measurements 

• Stationary combustion.

• Temperature profile along vertical axis.

• Concentration profiles along radial distance in
the “splash zone”.

• Concentration profiles along radial distance at 
the injection point.



Temperature vs height
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Temperature vs height
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Temperature vs height
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O2 , CO2 and CO concentration in the “splash zone” vs radial distance
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O2 , CO2 and CO vs radial distance at the injection height
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Experimental observation 

Freeboard temperature 
increase respect to bed 
temperature for Tbed < 850 °C. Non- uniform concentration in

the freeboard and in the bed 
(dead bed combustion zone). 

Post-combustion in the freeboard. 

Insufficient fuel-air mixing in the bed.



Fuel injection

Droplet size 
Jet penetration 

lenght
Fuel bubble size
and frequency

Bubble coalescence: average 
bubble size, rising velocity 

and residence time in the bed

Mass transfer between 
bubble and emulsion phase

Maximum excess air 
factor after coalescence

Flare phenomena

Bed phenomena
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• Test campaign with FBR80 in presence of gasoil 
atomization.

• Adaptation of the ultraviolet-visible absorption spectrscopy 
technique developed by Borghese et al. (2000) to 
measurements of carbon nano-particles and/or other organic 
species in the exhausts of gasoil-fired fluidized bed.

• Start-up of development work of a predictive mathematical
model of bubbling bed combustion of gasoil.

• A more accurate analysis of effective bed combustion 
efficiency and of freeboard post-combustion phenomena.

NEAR-FUTURE ACTIVITIES


