Pre-pilot Plant Studies on Fluidized Combustion of Liquid Fuels"

F. Miccio¹, M. Miccio² and G. Olivieri^{1,2}

¹Istituto Ricerche Combustione – CNR, Via Metastasio 17, 80125 Napoli, Italy ²Dipartimento di Ingegneria Chimica ed Alimentare, Via Ponte don Melillo, 84084 Fisciano (SA) Italy

41st IEA – FBC Meeting, Fisciano (Italy), 30-31 October 2000

FLUIDIZED COMBUSTION OF CONVENTIONAL PETROLUM-DERIVED FUEL

- Fluidized Bed Combustion of conventional liquid fuels (i.e. commercial products of oil refining) is possible (Barker and Beacham, 1980), but still not appealing from an economic point of view.
- Its application, however, as a "ultra-clean" or "mild combustion" technology may prompt newer interest.

OBJECTIVES OF THIS WORK

- to check feasibility and significance of bubbling bed combustion of gasoil on a pre-pilot scale plant (FBR370).
- to investigate extension of stationary combustion to temperature < 850°C.

• to understand and to describe the fluidized bed combustion mechanism of gasoil at medium-to low temperatures. **FBR370**

Experimental measurements

- Stationary combustion.
- Temperature profile along vertical axis.
- Concentration profiles along radial distance in the "splash zone".
- Concentration profiles along radial distance at the injection point.

Temperature vs height

Temperature vs height

Temperature vs height

Temperature increase in the freeboard as a function of the bed temperature and nozzle size

Bed temperature, °C

O₂, CO₂ and CO concentration in the "splash zone" vs radial distance

O₂, CO₂ and CO vs radial distance at the injection height

Experimental observation

Freeboard temperature increase respect to bed temperature for $T_{bed} < 850 \ ^{\circ}C$.

Non- uniform concentration in the freeboard and in the bed (dead bed combustion zone).

Post-combustion in the freeboard.

Insufficient fuel-air mixing in the bed.

Frequency and initial diameter of the fuel bubble as a function of the nozzle diameter (according to Davidson and Schuler, 1960)

Maximum air excess factor in endogenous bubbles at the top of the bed only for coalescence

expanded bed height, initial bubble diameter and excess of minimum fluidization 1000 Bed expanded height - mm l_0 800 chi / // $e_{\eta d}$ 600 Q° chd c_{hd} $T_{bed} = 750 \circ \overline{C}$ $d_p = 725 \,\mu m$ 400 $-U-U_{mf} = 10 \text{ cm/s}$ $---U-U_{mf} = 20 \text{ cm/s}$ $---- U-U_{mf} = 40 \text{ cm/s}$ 200 0.1 10 100 $\overline{-U_{B} \cdot \frac{dC_{B}}{dz}} = K_{BE} \Delta C_{BE}$ $X_{B} = \tau_{B} \cdot K_{BE}$ **X_B** - Crossflow ratio

Cross-flow ratio of fuel bubble as a function of

NEAR-FUTURE ACTIVITIES

• Test campaign with FBR80 in presence of gasoil atomization.

• Adaptation of the ultraviolet-visible absorption spectrscopy technique developed by Borghese et al. (2000) to measurements of carbon nano-particles and/or other organic species in the exhausts of gasoil-fired fluidized bed.

• Start-up of development work of a predictive mathematical model of bubbling bed combustion of gasoil.

• A more accurate analysis of effective <u>bed</u> combustion efficiency and of <u>freeboard</u> post-combustion phenomena.