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Definition and Scope
What is waste?

‘Waste’ means any substance or object which the 
holder disposes of or is required to dispose of 

pursuant to the provisions of national law in force

Waste considered in the context of 
co-combustion with coal in power power plant:

• waste wood
• agricultural residues
• sewage sludge

biomass
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Motivation for utilization of waste for power generation
• 1. Energy Potential

– Wood wastes and residues: 41.6 EJ/a
– Agricultural residues: 17.2 EJ/a
– Incentives for use of renewable energies

• 2. Kyoto Protocol
– Overall reduction of GHG by 5 % 
– European Union committed to 8 % reduction

• 3. Sewage sludge
– Land filling to decrease (e.g. TASi)
– Incineration to increase

• 4. Governmental actions
– Germany has decided to step out of nuclear energy
– ‘Renewable energy law’ promises subsidies (0.1 €/kWh)
– In Denmark: 1 million tons/year straw to be used for power 

generation
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Energy potential of agricultural residues

other
bagasse
rice husks
straw in EJ/a
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Estimation of sewage sludge production in  EU
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Sludge disposal routes in the EU 
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Advantages of co-firing waste with coal

• Capitalize on economy of scale
• Useful within economic transport distance of 50-80 km
• Caters well for seasonality of biomass production
• High volatile matter of biomass compensates high carbon 

content of coal
• Low cost CO2 reduction technique
• Low SO2 emission credits
• Coal furnaces improve the efficiency of biomass combustion
• Coal furnaces have efficient flue gas cleaning
• A reliable short term disposal opportunity for wastes
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Problems with utilization of waste as fuels

1. For agricultural residues:
– local production + low density          high transport costs
– annual harvest requires large storage space
– storage is associated with loss of biological substance and bears 

risk of self ignition
– low energy density requires larger plant size          higher 

investment costs than fossil -fired plants

2. For agricultural residues and sewage sludges:
– wide variety of fuel characteristics
– high volatile content
– risk of slagging, fouling, corrosion and agglomeration
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Fuel characteristics 

proximate analysis ultimate analysis (%waf)

moisture
(%raw)

volatiles
(%waf)

fixed C
(%waf)

ash
(%wf) C H O N S

road side grass
wheat straw
soy husk
coffee husk (mbuni)
coconut shell

16
20
6.3

11.4
4.4

61.7
77.0
78.6
76.4
76.2

38.3
23.0
21.4
23.7
23.8

23.1
5.7
5.4
4.6
3.2

48.2
48.4
45.4
43.9
51.2

6.6
6.2
6.7
4.8
5.6

41.9
45.0
46.9
49.6
43.1

1.94
0.58
0.9
1.6
0.0

0.24
0.09
0.1
0.1
0.1

sewage sludge 6.9 86.4 13.6 44.6 52 6.3 32.1 6.3 3.1

wood
peat
bituminous coal

40.0
37.0
7.5

84.9
69.8
38.8

23.3
30.2
61.2

0.8
6.8
5.3

50.7
57.1
88.0

5.9
5.9
6.0

43.1
43.1
4.0

0.2
2.3
1.2

0.04
0.8
0.8
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used as fuels

• moisture content depends on processing (coffee beans are 
dried before hulling, straw quality depends on weather 
conditions at time of harvesting)

• volatiles content is significantly higher than in coals
• ash content is low
• oxygen content is high
• low sulfur content but high contents of chlorine ( → HCl 

emissions, dioxin formation, corrosion), sodium and 
potassium (→ ash melting behavior, agglomeration) 
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Biofuel characteristics
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Content of K and Cl in wheat straw
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Leaching of barley straw on the field

1.2

 

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

 

C
on

te
nt

 in
 s

tr
aw

 (
%

)

Accumulated precipitation (mm)

K

Cl



Particle Technology Technical University Hamburg-Harburg

15

Weight loss analysis 
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Devolatilization characteristics

- devolatilization of biomass starts at low temperatures (160-
200°C) and is completed around 500°C

- combustion of the char formed can take place at 
relatively low temperatures  

1. Experiments with increasing oven temperature

- with increasing pyrolysis temperature the mass fraction of char 
decreases while the quantity of volatiles increases

- with increasing pyrolysis temperature the fraction of CO2 in the 
volatiles decreases whereas (H2 + CO) increase

2. Composition of the devolatilization products
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Influence of the temperature on the relative 
quantities of char and gas

600 650 700 750 800 850 900
0

10

20

30

40

50

60

70 volatiles
(straw)

volatiles
(stover)

char (stover)

char (straw)

M
as

s 
ra

tio
[%

]

Pyrolysis temperature [°C]



Particle Technology Technical University Hamburg-Harburg

18straw

0%

20%

40%

60%

80%

100%

600 750 900

stover

0%

20%

40%

60%

80%

100%

600 750 900

wood

0%

20%

40%

60%

80%

100%

500 600 700

sludge

0%

20%

40%

60%

80%

100%

670 750 870

other

CO2

CXHY

CO

H2



Particle Technology Technical University Hamburg-Harburg

19

Effects of high volatile matter content
• in bubbling fluidized beds for sewage sludge combustion the 

freeboard temperature is generally higher than the bed 
temperature

• experiments with coffee husks show the same phenomenon 
for overbed feeding

• dry waste materials will release their volatiles close to the 
feed point since the lateral solids mixing is comparatively 
low; wet waste material will require more time for drying 
and devolatilization which provides an opportunity to mix 
over the bed´s cross-section 
⇒ the high volatile matter content must be considered in 

the design of the fuel feeding configuration and the 
distribution of the combustion air
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TUHH plants
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21Axial temperature profiles in a bubbling 
fluidized bed combustor
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CFB-Boiler at Chalmers University, Sweden
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Char fraction
wt.-%

Wood
(80 % volatiles, waf)

Bituminous coal
(39 % volatiles, waf)

Volatile sources
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Conditions
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level
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combustion chamber outlet (before cyclone)
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agricultural residues

• bed material agglomeration in fluidized bed combustion
• fouling 
• corrosion
• in case of co-combustion with coal the composition of the 

resulting ash is different from that of the coal ash
→ ash can perhaps no longer be used for cement making

• deactivation of the DeNOx-catalyst in pf boilers
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Chemical composition of ashes (wt.-%, wf)

→ ashes of agricultural residues are characterized by high 
contents of K2O and (in some cases) Na2O

SiO2 Fe2O3 P2O5 Al2O3 CaO Na2O K2O

cotton husk
soy husk
coffee husk (mbuni)
coffee husk (parchment)

10.8
1.7

13.5
16.6

1.9
2.5
2.2
2.4

4.0
4.9
3.7
3.4

1.3
7.4
3.9
4.5

20.7
21.4
10.7
9.8

1.3
5.3
0.4
0.5

49.6
30.5
38.1
36.9

sewage sludge 38.3 12.5 15.4 14.8 9.1 2.2 2.2

wood
peat
bituminous coal

12.8
24.6
43.7

5.2
8.2

10.2

2.1
5.4
0.3

4.1
8.1

24.7

45.2
31.7
5.8

0.6
0.4
0.9

0.5
0.6
3.2
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Ash melting temperatures 

* from Kaltschmitt & Hartmann

K2O, wt.-% initial deformation
temperature, °C

hemisphere
temperature, °C

flow
temperature, °C

straws
barley
oat
rye
Wheat

grains
rye*
wheat*

40.3
40.3
19.2
6.6

730 – 800
750 – 850
800 – 850

900 – 1050

710
687

850 – 1050
1000 – 1100
1050 – 1150
1300 – 1400

887

1050 – 1200
1150 – 1250
1300 – 1400
1400 – 1500

810
933

wood
spruce* 1426 1600 1583

coals
Colombian
Russian

2.2
2.4

1283
1282

1353
1363

1427
1404
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combustion systems
• melting ash may act as a binder for bed particles

• alkali compounds may react with Si compounds of bed particles: 
2 SiO2 + Na2CO3 → Na2O·2SiO2 + CO2, melting point 874°C 
4 SiO2 + K2CO3 → K2O·4SiO2 + CO2, melting point 764°C 

• if sufficient Fe2O3 is available the risk of agglomeration is reduced 
since reaction with the alkali compounds according to
Fe2O3 + X2O → X2Fe2O4
Fe2O3 + X2CO3 → X2Fe2O4 + CO2
leads to compounds with melting temperatures > 1135°C

• beginning of agglomeration may be detected by fluctuations in bed 
temperature and pressure differential
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Combustion of coffee husks  in the fluidized bed

overbed-feeding, view from the distributor level after bed has been taken 
out, agglomerate layer has formed in the freeboard
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Agglomeration in fluidized bed combustors

• tendency towards agglo-
meration may be 
counter-acted - to a 
limited extent - by

- vigorous movement of 
the bed particles at high 
fluidizing velocity 
(circulating rather than 
bubbling fluidized bed)

- use of coarser bed 
material
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• increasing bed temperature increases the risk of agglomeration
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hash melting may be estimated from analysis: 
h flow temperature TFP = 1369 – 43.4 K + 192.7 Ca – 698 Mg, 

°C, were K, Ca, Mg are the contents of the elements in wt.-%

→Ca-containing additives may be used to increase TFP of fuel 
ash (limestone injection into the splash zone of a rice stalk 
fluid bed combustor prevented fouling)

→other additives have also turned out to be effective
(addition of 3 wt.-% kaolin to chopped oat straw increased 
deformation temperature from 770 to 1200-1280 °C

hChange of bed material sand against other materials 
(dolomite, alumina, ...)

→Saxena et al. cofired peanut hull pellets with propane: 
agglomeration with silica sand, no agglomeration with 
alumina
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How to reduce the risk of agglomeration?

→ blending of risky fuels with other fuels (e.g. blending of 
coffee husks with 20 % coal containing 40 % ash 

reduced K in fuel ash from 43.8 to 13.5 %)

→ leaching of K from straw by rain increases initial 
deformation temperature by 100-150 K
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Slagging and fouling
• is quite often experienced in combustors firing 100 % straw

→Muthukrishnan et al. (1995) in 10 MW FBC plant firing 
rice stalk experienced ash deposition on superheater tubes 
in flue gas path

→for straw combustion in grate-fired boilers in Denmark a 
lot of trouble (ash fusion on the grate, slagging in the 
furnace, fouling on convective surfaces) is reported

• in coal industry an alkali index is used
- above 0.17 kg alkali/GJ: fouling probable –

e.g. 0.07 kg/GJ for a polish coal, but 1.0 kg/GJ for rice hulls,
1.1 kg/GJ for wheat straw, 1.6 kg/GJ for rice straw

→fouling must be expected with agricultural residues and has 
to be taken into account in the design and operation of the 
combustion system
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Corrosion

- is a problem in the mono-combustion of straw:
in Danish straw-fired district heating boilers 
underneath ash deposits red layers of corrosion 
products found on convection tubes

- corrosion rates may be acceptable for co-
combustion with coal if the energy share of the 
straw is about 10-20 %

- potassium and chlorine are the key elements
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Material: X20CrMo V12.1 (Spliethoff 1999, Sander 2000)
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residues

• NOx: single-stage combustion of
rice husk 200-370 mg/m3

straw 400 mg/m3

coffee husk 400 mg/m3

→staged combustion may be necessary
• SO2: due to low content in fuel no special measures required
• HCl: typically 20-120 mg/m3,

whether HCl washing is necessary depends on legal conditions
(EU directive for waste combustion applies for co-combustion 
but not for mono-combustion, special regulations for biomass 
fired boilers)

• dioxins: generally less than 0.1 ng TE/m3
(Danish straw fired power plants < 0.01 ng)

• particulate emissions:
80 % of the ash particle mass released from the combustion of 
wood and grass is associated with particle sizes < 1 µm
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Legal issues associated with co-firing of wastes
Legal basis for EU: 

Directive 2000/76/EC of December 4, 2000
on incineration of waste

• Directives 86/369/EEC, 89/429/EEC, 94/67/EC are replaced 
as from December, 2005
→one directive now for waste and hazardous waste

incineration and co-incineration

• air emission limit values for co-incineration
→emission limit values depending on the plant size and

plant process

• emission limit values for discharge of waste water from 
cleaning of exhaust gases



Particle Technology Technical University Hamburg-Harburg

38Operating Conditions
• For slag and ashes: Total Organic Carbon (TOC) content < 3 % 

or loss of ignition (LOI) < 5 % of the dry weight of the material

• Waste incineration: temperature of the gas resulting from the 
process ≥ 850 °C for two seconds after the last injection of 
combustion air

• Co-incineration: temperature of the gas resulting from the 
process ≥ 850 °C for two seconds

• For hazardous wastes with a content of halogenated organic 
substances > 1 % the temperature has to be raised to > 1100 °C

• Automatic system required to prevent waste feed
– during start up
– when T ≤ 850 °C or ≤ 1100 °C
– when exceeding any emission limit values
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Polluting

substances

EU-Directive
waste incineration

Daily average values
in mg/m3

standard conditions,
dry basis,

11 vol.-% O2

17th BImSchV
waste incineration

Daily average values
in mg/m3

standard conditions,
dry basis,

 11 vol.-% O2

13th BImSchV
power plants

Daily average values
in mg/m3

standard conditions,
dry basis,

7 vol.-% O2

TOC 10 10 20

CO 50 50 250

NOX (as NO2)
>6t/h: 200
<6t/h: 400 200 800

SO2 50 50 400

HCl 10 10 50

HF 1 1 2

Hg 0,05 0,03 (since 1999) -

Dioxins and
furans

0,1 ⋅10-3 0,1 ⋅10-3 -
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German legislation for sludge combustion

• If heat release by sludge > 25 %
→ 17th regulation of the German federal immission law

(17thBImSchV)

• If heat release by sludge < 25 %
→ averaged emission limits of the 13thBImSchV regulation

(for power plants) and17th regulation
→ mixing rule

• If heat release by sludge < 25 %
→ emission limits have to be kept as if the heat release of

the waste were exactly 10 %
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Determination of the heat release

( ) fuelu,fuelsupportu,supportwasteu,waste

supportu,supportwasteu,waste

Hm+HmHm
HmHm

⋅⋅+⋅

⋅+⋅
&&&

&&

mwaste:      mass flux of waste

mfuel:        mass flux of normally authorised fuel

msupport:    mass flux of support fuel

Hu,waste:    heating value of waste

Hu,fuel:      heating value of normally authorised fuel

Hu,support:  heating value of support fuel
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wastefuel

17waste13fuel
mix VV

CVCVC
+

⋅+⋅
=

Cmix total emission limit value
C13 emission limit value 13thBImSchV
C17 emission limit value 17thBImSchV
Vfuel exhaust gas volume from the incineration of waste at 

standard oxygen concentration of 7 %
Vwaste exhaust gas volume from the incineration of the fuel 

normally used in the plant at standard oxygen 
concentration of 11 %
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Reference conditions

Total emission limit values are referred to reference oxygen 
concentrations:

wastefuel

chV2,17thBImSwastechV2,13thBImSfuel
ref2, VV

OVOV
O

+
⋅+⋅

=

It is forbidden to convert an emission value which is measured at a 
lower O2 value in off gas than the reference O2 value. If the O2

concentration in the exhaust gas is higher than the reference 
concentration it must be corrected.
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– for co-combustion of waste:
⇒ emission limit values for co-incineration plants (Annex II)

according to mixing rule

– for co-combustion of hazardous waste:

• heat release of hazardous waste < 10 %: 
emission limits have to be kept as if the heat release of the 
waste was exactly 10 %

• heat release of hazardous waste ≥ 10 %: 
emission limit values for co-incineration plants (Annex II)
according to mixing rule

• heat release of hazardous waste > 40 %: 
emission limit values for incineration plants (Annex V)
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Mixing rule for EU-Directive - (Annex II)
Emission limit value C depends on volume fraction of the exhaust 
gas from waste incineration, the plant size and the plant process.

procwaste

procprocwastewaste

VV
CVCV

C
+

⋅+⋅
=

C : total emission limit value and oxygen content for standardisation  
respecting the partial volumes

Vwaste : exhaust gas volume resulting from the incineration of  the waste
Cwaste : emission limit values set for incineration plants (Annex V)
Vproc   :  exhaust gas volume resulting from the combustion of fuels

normally  used in the plant 
Cproc   : emission limit values set for certain industrial sectors (Annex II)
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Standard conditions (EU)
• 273 K, 101,3 kPa, 11 % oxygen, dry gas in exhaust 

gas of incineration plants
• 273 K, 101,3 kPa, 3 % oxygen, dry gas in exhaust 

gas of incineration of waste oil
• 273 K, 101,3 kPa, 10 % oxygen, dry gas in exhaust 

gas of cement kilns
co-incineration:
• in the case of co-incineration, the results of the 

measurement shall be standardised at a total oxygen 
content as calculated in Annex II

• oxygen content for calculation of Cproc:
– solid fuels: 6 %, dry gas
– biomass: 6 %, dry gas
– liquid fuels: 3 %, dry gas
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VGB

• Hochkant
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Grenaa
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Co-combustion of sewage sludge in Rheinbraun’s 
Berrenrath Plant

Sludge
bunker

Chimney

ESP

Coal
bunker

CFB- Combustor

Activated
coal

AshSludge and coal
feed points
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Co-combustion experience from Rheinbraun’s 
Berrenrath Plant

• 120,000 t/a mechanically dewatered sludge is incinerated 
(about 40,000 t d.m. /a)

• Permission granted to burn 65,000 t d.m./a

• no problems with emissions after injection of active coke before
the ESP was installed

• Hg emission is now 4µg/m³
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Tacoma steam power plant - USA

Special features
• periodical removal of  

agglomerated bed media, glass,
metals etc from bed

• 93 % HCl removal

Details
Owner -Tacoma Public 

Utilities
Capacity - 50 MWe
Furnace  - FBC
Fuel        - coal: 20 %

wood: 60 %
RDF: 20 %
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Experience gained at Tacoma steam power plant

• Co-combustion from 1991 to 1998
• All emission limits met

• FBC+limestone injection led to low SO2 and NOx

• 90 % HCl removal

• All byproducts recycled
• Fly ash used for sludge stabilization and cement production
• Aggregates used as road base material

• Economics
• the renovation of the plant cost $45m million
• Project received grant from state of $ 15 million
• Plant was saving municipality of $ 1 million per year by burning RDF
• From 1997 the plant was making losses of $ 2 million per year due to

unfavorable costs of wood and cheap electricity from public utilities
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HAT-BFB multifuel combustion
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HAT-BFB multifuel combustion
• Biomass and part of coal burned in bed at low temperature 
(800-850 °C) to avoid agglomeration

• Remaining part of coal burned in freeboard at 1350-1450

• High freeboard temperature
– Leads to higher combustion efficiency
– Low NOx based on the reburning technique

• Large scale demonstration plant
– at Rauhalahti Power Plant in Finland
– Fuel: wood, bark and coal
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Experts ranking of co-firing technologies
By 80 experts at EU Seminar in Cottbus, 2000

Fuel mixture PF FBC CFB PFBC IGCC GC

Coal and biomass 2,6 3,3 3,5 1,9 2,3 2,6

Coal and residual wood 2,3 3,4 3,8 1,7 2,0 2,6

Coal and straw 1,9 2,5 3,0 1,6 1,6 1,9

Coal and sewage sludge 2,7 2,9 3,2 2,4 2,5 2,4

Coal and petroleum coke 2,1 2,0 2,5 2,1 3,7 2,3

Coal and RDF 2,1 2,6 3,1 1,9 3,0 2,7

Coal and municipal waste 1,7 2,6 2,9 1,6 2,7 2,7

Coal and plastics 1,9 2,3 2,3 2,0 2,7 2,9

Average of ranking 2,2 2,7 3,0 1,9 2,6 2,5

Position of ranking 5 2 1 6 3 4
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Conclusions
• Agricultural residues and sewage sludges are CO2-neutral 

fuels. Their use contributes to the global reduction of CO2
emissions.

• Agricultural residues are difficult fuels due to high alkali 
contents and handling properties.

• Co-combustion with coals in existing power stations is an 
interesting option.

• Sewage sludges provide income for power stations

• Agricultural residues will only be used to a greater extent if 
economic incentives are sufficient.
→ governmental programs, tax privileges and subsidies 

are necessary
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