

Hazardous Waste Combustion in a CFBC

Presentation to 48th IEA Meeting Vienna, Austria 24th May 2004

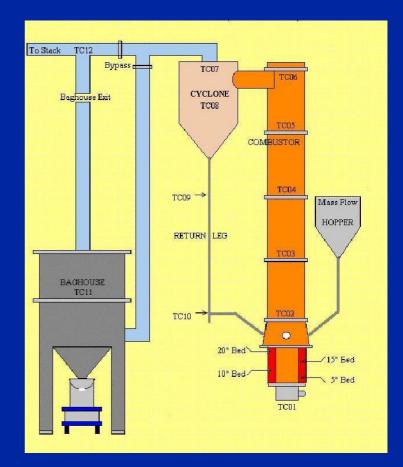
- Canada biggest environmentally contaminated site
- \checkmark 700,000 tons of tarry sludge deposit in streams from Sydney Steel over an 80 year period
 - High concentrations of PAH, some CDD/F Contamination

CANMET Energy Technology Centre Sydney Tar Ponds

- Tars and Sludge gathered in a series of lagoons
- For the last two decades covered with water
 - But out of site is not out of mind
 - High leukemia and other health problems
- Also, the home of a failed FBC solution

Location of Tar Ponds

CETC CANMET Emergy Technology Centre Solutions and Initiatives


▲ Possible solutions include

- Reviving the twin FBC incinerators
- Burning material in Point Aconi (5-10% mixture)
- Build Completely new facilities
- Federal Government has now committed \$450M to solve the problem

CETC CANREP.for.solutions to Sydney Tar Ponds Problems in 2002

- CETC with Colmac Resources Ltd one of two "winners" to provide solutions
- ▲ Sludges were mixed with coal in a 10:90% mixture
- Tests carried out in CETC 100 mm CFBC Pilot Plant
- Premixed Limestone used for trials (90-92% CaCO₃)
- The fate of the heavy metals/PAHs critical to the success of the tests.

20 gallons of Sludge Sample shipped in 45 gallon drum

- ▲ 20 gallons sludge shipped in 45 gallon drum
- Consists of coarse to fine grained sand, silt and tar
- Contaminants include PAH, PCB, heavy metals other organics, coal tar and raw sewage
- Average PAH 6000 mg/kg, PCB < 5 mg/kg</p>
- Sample had average 54% moisture higher than 40% planned
- Sludge mixed with coal 10:90 sludge: coal and 0.25 kg of CaCO3 mixed to give Ca:S molar ratio of 2.2

CETC CANMETypical-Organic Sludge Components (mg/kg)

Benzene	55	Benzo (a) anthracene	169
Toluene	100	Benzo (a) pyrene	145
ethylbenzene	15	Benzo (b) fluoranthracene	263
xylenes	64	Dibenzo (a,h) anthracene	31
C ₆ -C ₁₀ aliphatics	830	Indo (1,2, 3-cd) pyrene	74
C10-C21	18,400	Napthalene	827
C21-C32	30,900	Phenanthrene	587
PCB	3	Pyrene	337
Total PAH	4064		

CANMET Energy Technology Centre Typical Metals (mg/kg)

Percent moisture	38%	Fe	29,400
AI	8,650	Pb	204
As	48 (12)	Мо	6
Ва	100	Ni	12.6
Ве	1.1	Se	2.7
Cd	1(22)	Zn	368(360)
Cr	27	V	18
Со	5.6(300)	Hg	1.4
Cu	91		

CANMET Energy Technology Centre Proximate Analysis

	Piney Creek Coal	Tar Ponds Sludge	Coal:Sludge	Fuel:CaCO ₃
Moisture	1.8	51	1.7	1.4
Ash	27.6	20.62	27.3	37.8
Fixed Carbon	41.2	-	29.8	34.0

CETC CANMET Emergy Technology Centre Ultimate Analysis & Calorific Value

	Piney Creek Coal	Tar Ponds Sludge	Coal:Sludge	Fuel:CaCO ₃
Carbon	55.5	18.4	56.4	45.2
Hydrogen	3.7	7.4	3.9	3.0
Nitrogen	1.1	0.6	1.0	0.8
Sulphur	3.6	1.1	3.2	1.9
Oxygen (by diff.)	6.8	-	6.9	9.9
Calorific Value MJ/kg	23.14	22.6	23.44	17.34

Test Conditions

▲ Three tests were run

Standard gas analysis was done along with

- PCBs, PCDD/DF, PAH measured by EPA method
 23
- -HCI by EPA method 50
- Metals and Particulates by EPA method 29
- Grab samples also taken for total hydrocarbons
- Tests were very steady with mean temperature of 855-859°C

CANMET Energy Technology Centre Test Conditions

Fuel feed rate (kg/h)	5.0±0.04	5.3 ±0.15	5.3 ±0.11
Total fuel mix fed during stack gas sampling (kg)	14.0	21.3	16.4
Gas vel. (bed) (m/s)	1.5 ±0.2	1.9 ±0.2	1.8 ± 0.2
Gas vel. (riser) (m/s)	2.8 ±0.2	2.7 ±0.2	2.6 ±0.2
Av. Bed temp. (°C)	859 ±3.8	857 ±5.8	856 ±5.9
Av. Comb. temp. (°C)	858 ±5.6	860 ±15.8	835 ±21.6
Total air (kg/h)	23.3 ±2.1	22.6 ±1.7	22.5 ±1.4

	Run 1	Run 2	Run 3
O ₂ %	4.0 ±0.56	3.3 ±0.67	2.98 ±0.67
CO ₂ %	15.1 ±0.43	15.9 ±0.63	16.1 ±0.62
CO ppm	1217 ±114	1623 ±429	2214 ±559
SO ₂ ppm	342 ±71	405 ±192	319 ±68
NO _x ppm	179 ±12	199 ±22	154 ±24

CETC CANMET Emergy Technology Centre Other Emission Results

	Run 1	Run 2	Run 3
Ca:S	2.2	2.2	2.2
η _{SO2}	89.9±3.0	89.0 ±6.0	91.3 ±2.4
Fuel N to NO _x %	5.97 ±0.91	6.11 ±1.1	4.73 ±1.0
Hg μg/m ³	0.042		
Particulate matter mg/m ³	2.87		

CETC CANMET Energy Technology Centre Hydrocarbons by GC and other emissions

- With the exception of hexane plus which was 0.2 and 0. 1 for runs 1 and 3 respectively all other hydrocarbons were below detection limits (<100 ppm)</p>
 - Includes CH4, C2H6, C3H8, C2H4, C3H6, C2H2, n and iso-butane etc.
 - -HCI was 0.79 mg/m³
 - All heavy metals in stack gases were at acceptable levels

VOC from Run 2

Most detectable levels of VOCs in the flue gas were below detection limits

Detectable VOCs were benzene (82 and 39 µg/m³ for cartridges 1&3 respectively) and toluene (9.6 and 6.4 µg/m³ for cartridges 1&3 respectively)

For comparison Garcia et al., 1992 report benzene concentrations of 20 µg/m³ and toluene concentrations of 63 µg/m³ for a PF plant firing Coal, while limits from an industrial CFBC were 9.0 µg/m³ for benzene and 1.4 µg/m³ for toluene

PCDD/Fs

Concentration of all 17 2,3,7,8 substituted congeners was 11 pg/m³

- Total PCDD/F were 496 pg/m³ (cf with industrial CFBC of 405 pg/m³)
- TEQ of PCDD/F was 0.011 pg/m³ (cf with industrial CFBC boiler burning coal with 5.6 pg/m³)
- Minibed will be able to reach the new "2008" gas release limit (TEQ 0.032 ng/m³)

CETC CANMET Energy Technology Cent

Conclusions

Sulphur capture efficiencies were achieved of 89-90% with Ca:S molar ratio of 2.2, fuel NOx emissions were good, and CO levels reasonable for this type of small CFBC

- PCBs and PAH emissions were all comparable or lower than seen with industrial CFBC, despite the nature of the fuel
- ▲ Benzene and toluene were relatively high
- Dioxin and Furan emissions are also acceptable
- The Sydney Tar Ponds Sludge can be burnt in a CFBC