Decomposition of N_2O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Vesna Barišić
Decomposition of N_2O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Kinetics of Catalytic Nitrogen Oxide Reactions in Multifuel CFB Conditions

Vesna Barišić

Dr. Fredrik Klingstedt, Dr. Pia Kilpinen, Prof. Mikko Hupa
Introduction

The decomposition of N_2O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler.

\[\text{N}_2\text{O} \rightarrow \text{N}_2 + \frac{1}{2}\text{O}_2 \]

- Solids from CFB boiler:
 - char
 - lime
 - ash
 - bed material

Lack of data in the literature regarding the catalytic activity of solids from fluidized bed during combustion of biomass fuels and wastes.

Catalytic activity affected by flue gases, especially water vapor.

Objective. Catalytic activity of bed material from co-combustion of biomass fuels and wastes towards N_2O decomposition was studied as a function of:
- fuel type,
- particle size,
- and presence of water vapor.

Åbo Akademi
Process Chemistry Centre

Vesna Barišić
Decomposition of N\textsubscript{2}O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Experimental

Tested solids

Bed material from the bottom bed of a 12 MW\textsubscript{th} CFB boiler:

- **Ch1** – wood pellets
- **Ch2** – wood pellets & sludge A
- **Ch3** – wood pellets & sludge B
 - mixture of sand & ash
 - char burned off before testing

<table>
<thead>
<tr>
<th></th>
<th>Wood pellets</th>
<th>Sludge A</th>
<th>Sludge B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry mat., wt-% a.r.</td>
<td>99.6</td>
<td>98.0</td>
<td>97.2</td>
</tr>
<tr>
<td>Ash, wt-%, dry</td>
<td>0.4</td>
<td>46.8</td>
<td>42.1</td>
</tr>
<tr>
<td>Volatiles, wt-%, dry</td>
<td>84.3</td>
<td>52.4</td>
<td>59.5</td>
</tr>
<tr>
<td>Nitrogen, wt-% dry</td>
<td><0.1</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>SiO\textsubscript{2}, wt-% of ash</td>
<td>12.8</td>
<td>27.4</td>
<td>21.8</td>
</tr>
<tr>
<td>Al\textsubscript{2}O\textsubscript{3}, wt-% of ash</td>
<td>2.4</td>
<td>14.5</td>
<td>36.8</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3}, wt-% of ash</td>
<td>1.7</td>
<td>22.3</td>
<td>5.8</td>
</tr>
<tr>
<td>CaO, wt-% of ash</td>
<td>32.5</td>
<td>5.7</td>
<td>5.3</td>
</tr>
<tr>
<td>MgO, wt-% of ash</td>
<td>5.4</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>P\textsubscript{2}O\textsubscript{5}, wt-% of ash</td>
<td>2.8</td>
<td>15.7</td>
<td>13.6</td>
</tr>
<tr>
<td>Na\textsubscript{2}O, wt-% of ash</td>
<td>0.7</td>
<td>0.14</td>
<td>0.1</td>
</tr>
<tr>
<td>K\textsubscript{2}O, wt-% of ash</td>
<td>12.9</td>
<td>1.65</td>
<td>1.2</td>
</tr>
<tr>
<td>SO\textsubscript{3}, wt-% of ash</td>
<td>3.8</td>
<td>5.0</td>
<td>3.8</td>
</tr>
<tr>
<td>Cl-, wt-% of ash</td>
<td>1.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CO\textsubscript{3} , wt-% of ash</td>
<td>~24</td>
<td>3.9</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Experimental Bed material characterization

- **Elemental composition** – X-ray fluorescence (XRF)
- **Total BET surface area** – N$_2$-physisorption
- **Morphology and elemental composition of the particle’s surface** – Scanning electron microscope combined with an energy dispersive X-ray analyzer (SEM/EDX)
Decomposition of N\textsubscript{2}O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Experimental Setup

- **Secondary inlet**
- **Sample**
- **Quartz wool**
- **Quartz plate**
- **Thermocouple**

Primary inlet

Outlet

Experimental

- **Data acquisition**
- **T indicator**
- **Gas Chromatograph**

Setup

- **Evaporator**
- **\(\text{H}_2\text{O}\) pump**
- **\(\text{N}_2\text{O}\)**
- **He-II**
- **He-I**

1: Mass flow controllers
2: Tube furnace
3: Fixed bed reactor
4: Thermocouple
5: Condenser
6: Calibration gas
7: Pump

Vesna Barišić
Abo Akademi
Process Chemistry Centre
Decomposition of N₂O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Results

Effect of fuel type

Sample particle size: 125-710, pressure 1 atm, residence time: 0.4 s, N₂Oₜₐₐₚ: 500 ppmv in He, total gas flow 1800 ml/min.

<table>
<thead>
<tr>
<th>Bed material</th>
<th>Ch1</th>
<th>Ch2</th>
<th>Ch3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>93.7</td>
<td>95.0</td>
<td>86.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.6</td>
<td>1.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.6</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>CaO</td>
<td>2.6</td>
<td>1.0</td>
<td>2.3</td>
</tr>
<tr>
<td>MgO</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.6</td>
<td>0.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.8</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>sum</td>
<td>99.6</td>
<td>99.5</td>
<td>99.3</td>
</tr>
</tbody>
</table>

Bet surface area, m²/g

<table>
<thead>
<tr>
<th>Ch1</th>
<th>Ch2</th>
<th>Ch3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.44</td>
<td>2.72</td>
<td>2.85</td>
</tr>
</tbody>
</table>
Results

Effect of fuel type

Ch3 (wood pellets & sludge B), 125-710 µm

a group of particles

ash particle

sand particles

Decomposition of N₂O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Vesna Barišić

Åbo Akademi
Process Chemistry Centre
Results

Effect of particle size

Decomposition of N$_2$O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Ch1 (wood pellets)

- 125-297 µm
- 355-500 µm
- 125-710 µm

Ch2 (wood pellets & sludge A)

- 125-297 µm
- 355-500 µm
- 125-710 µm

Fraction 125-297 µm: ~8 wt-%; 355-500 µm: ~48 wt-%; 125-710 µm: ~97 wt-% of original sample

Pressure 1 atm, residence time: 0.4 s, N$_2$O$_{in}$: 500 ppm$_v$ in He, total gas flow 1800 ml/min.
Decomposition of N$_2$O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Results

Effect of water vapor

Sample particle size: 125-710, pressure 1 atm, temperature 850°C, mass of sample ~3 g, residence time: 0.4 s, N$_2$O$_{in}$: 500 ppm$_v$ in He, total gas flow 1800 ml/min.

Åbo Akademi
Process Chemistry Centre

Vesna Barišić
Conclusions

- All investigated materials act as a catalyst, in the temperature range 800-910°C, and their activities were affected by fuel type.

- The elemental composition of the bed material, mostly sand particles, gave good correlation with the activity. The measured catalytic activity of the bed material samples increased with the amount of the catalytically active oxides (CaO, MgO, Fe₂O₃, Al₂O₃).

- The elemental composition of the coating layer of the sand particles changed according to the composition of the ash from the parent fuel.
Conclusions

• In case of the bed material sampled while burning wood pellets with small amount of ash, different size fractions of bed material had similar activities.

• In case of the bed material sampled while burning wood pellets and sludge with high amount of ash, the activity of different size fractions of bed material decreased when particle size increased from 125-297 to 355-500\(\mu\)m.

• The higher activity of 125-297 \(\mu\)m fraction was attributed to a higher content of particles of ash (sludge), which are more porous and have a higher amount of catalytically active oxides.
Conclusions

• Increase of water up to 15 vol-% caused a significant decrease in the activity of bed materials, but from 15 vol-% to 30 vol-% there was only a minor further decrease.

• The decrease of activity was attributed to both sintering and coverage of active sites by H₂O molecules.
Decomposition of N_2O catalyzed by the bed material from co-combustion of sewage sludge and wood pellets in CFB boiler

Prof. Tapio Salmi
Kari Eränen
Clifford Ekholm

Lars-Eric Åmand

Jan-Eric Johnsson