CO-COMBUSTION OF COAL AND BIOMASS

in an FBC boiler

František Hrdlička

Czech Technical University in Prague,

Faculty of Mechanical Engineering

New Czech law " SUPPORT OF THE RENEWABLE ENERGY"

- MAIN GOAL 8 % OF THE
 ELECTRICITY PRODUCTION IN CR
 FROM THE **RES** IN THE YEAR 2010
- CO COMBUSTION OF BIOMASS WITH COAL IN THE COAL CFB POWER UNITS
 – ONE OF THE IMPORTANT EVENTUALITY

SHORT TIME OPERATION

- LOT OF MAIN CZECH PRODUCERS OF ELECTRICITY AND HEAT realised co combustion tests of coal and biomass
- DESCRIPTION of the results from two different tests :
- CFB coal boiler in Plzeňská teplárenská
- Industrial pulverized coal boiler in Lovochemie a.s.
- Both boilers: coal lignite from west north bohemian mines, biomass cutwood and sawdust

PLZEŇ

Main goal:

Combustion of biofuel (cutwood) with

brown coal

Boiler features:

CFB boiler

140 MW heat power output (steam 540 °C,

136 bar)

92% efficiency

original fuel: brown coal from Sokolov

mines

Location:

Heat production plant in Lovochemie, Inc.

Main goal:

Combustion of biofuel (sawdust) with brown coal

Boiler features:

- pulverised coal fired boiler
- 40 MW heat power output
- 88% efficiency
- original fuel: brown coal from Bílina mines

Fuel preparation in PLZEN:

- mixing of the sawdust with the coal in the coal bunker

 addition of the mixture throught the chain convayor into the basalt chute

Boiler operation:

- full power
- no changes in power output during the experiment

Fuel preparation in LOVOSICE:

- mixing of the sawdust with the coal in the coal bunker

- addition of the mixture into coal mill and coal dryer

Boiler operation:

- full power
- no changes in power output during the experiment

Biofuel features:

- sawdust
- cutwood
- humidity approx.
 40 % in Plzeň
 65% in Lovosice
 added in approx.
 ratio 1:10

Measurements:

- CO, NO_x , SO_2 and O_2 at flue gas outlet Lovosice plant
- unburnt carbon in slag (by the operator)
- unburnt carbon in fly ash (by the operator)

Results:

1. CO, NO_x , SO_2 and O_2 at flue gas outlet

2. Unburnt carbon in slag and fly ash

Problems:

1. Insufficient mixing of the biofuel and the coal

real biofuel/coal ratio unknown

2. High water content in the biofuel

problems can occur in the fuel bunker with the sticking and crowning mix fuel

Conclusions:

Short-time combustion of coal and biofuel up to 10:1 ratio <u>is possible</u>

1. <u>Positives</u>

- \Rightarrow decrease of SO₂ emissions
- ⇒ addition of biofuel through existing fuel system is to the mix ratio 1 : 10 possible

2. <u>Negatives</u>

- ⇒ insufficient homogenisation of the fuels by the digger
- ⇒ emission of dioxines is not negligible by green cutwood using (0,5 ng/m³) –CFB boiler
- ⇒ expected increase of unburnt carbon in slag and fly ash

Recommendations – what is necessary?

- ⇒ development of mixing technology for biofuel and coal
- \Rightarrow execution of long-time combustion tests
- ⇒ setting of optimal coal/biofuel ratio
- ⇒ development of technique for coal/biofuel ratio
 determination
- \Rightarrow development of the combustion technology of the needles

Thank you for your attention!