

VANADIUM COMPOUNDS IN ASHES FROM A CFBC FIRING 100% PETROLEUM COKE

E.J. Anthony CANMET Energy Technology Centre IEA FBC Workshop Vienna, May 23, 2004

Canada

CETC CANMET Energy Technology Centre Vanadium from Petcoke

- Petroleum coke is the only common feedstock with high Vanadium contents
- It is increasingly burned in large CFBC boilers (100-250 MWe) such as NISCO
- Fuel grade petcoke is always also high sulphur
- Ashes are unique in that they don't contain dehydroxylated clays

Petrleum Coke

- Petcoke is a by-product of crude refining process
 - Over 22 million tons of petcoke is produced in the US annually
 - Ideal fuel for FBC systems but problems are possible
 - Corrosion/fouling
 - High Nitrogen and Sulfur content
 - Possible Leachates from ash

CETC CANMET Energy Technology Centre Petroleum Coke as fuel

Fouling has been seen with boilers firing petcoke

- However, Anthony and his co-workers have unequivocally shown this is a low ash and not a V problem
- V is always associated with Ni at a constant V:Ni ratio and always present as Ca vanadates

Petcoke as Boiler Fuel

- The high V content of petcoke (sometimes several per cent in the ash), and Ni can be a concern
 - Chisman Creek had 500,000 tons of coal/coke ash from a PC boiler
 - V, Ni and Se were found in the ground water and Chisman Creek became a superfund site
 - The difference between PC and FBC systems firing Petcoke is limestone

GWF Power Systems

▲ GWF operates 6 CFBC in the Bay area in California

- A sample of ash from one of these boilers firing 100% petroleum coke was examined.
- The primary purpose of the investigation was to examine the V speciation in the ash because this affects V solubility

Analysis of Feedstocks

	Kaolin	Limestone	CFBC ash - UT	CFBC ash analysis - CETC	
SiO ₂	45.60	2.9	8.07	9.14	8.57
Al ₂ O ₃	37.60	0.4	4.34	4.23	4.27
Fe ₂ O ₃	0.40	0.2	1.96	1.71	1.78
CaO	0.60	47.6	41.95	43.98	43.70
MgO	0.60	5.5	6.19	6.03	5.89
Na ₂ O	0.15		0.92	0.75	0.73
SO ₃			28.9	28.8	24.64
K ₂ O	0.15				
V ₂ O ₅			1.16	0.96	0.98
LOI	13.25	42.5	5.0	6.03	6.55
Sum	100.0	99.1	98.5	100.67	97.11

Waste Extraction Test

▲ A waste extraction test was carried out

- Sample was treated with a 0.2 M sodium citrate solution
- V in liquid was 0.071 mg/L which is equivalent to 0.013% of V in the sample and is negligible
- Next Phase Separation was performed on the ash

QXRD Examination of Ash

Sample	% of	V%	XRD results	
	initial sample	(neutron activation)	Major	Minor
1: Original OFBC ash	100	0.61	Anhydrite (CaSO ₄) Lime (CaO) Periclase (MgO)	Unidentified small peaks

Phase Separation-QXRD

Sample	% of	of V % itial (neutron nple activation)	XRD results	
	initial sample		Major	Minor
2: D-W(40 min)-D	12	0.58		
3: D-W(40 min)- W(4.3 h)	27	1.46	Anhydrite Periclase Gehlenite (2CaO.Al ₂ O ₃ .SiO ₂) Calcite (CaCO ₃)	Unidentified minor peaks
4: W(7.3 h)	38	1.24	Gehlenite Anhydrite Periclase Calcite Quartz (SiO ₂)	Sulphur (S) Unidentified minor peaks

Phase Separation - QXRD

Sample	XRD results		
	Major	Minor	
5: W(72 h)-W(96 h)	Ettringite $(Ca_6Al_2(SO_4,SiO_4,CO_3)(OH)_{12}\cdot 26$ $H_2O)$ Gehlenite Periclase Quartz Calcite	$\begin{array}{c} Ca_{2}V_{2}O_{7}.2H_{2}O\\ Fe_{4}(VO_{4})\cdot 5H_{2}O\\ Mg_{2}V_{2}O_{7}\\ Na_{4}V_{2}O_{7}\cdot 18H_{2}O\end{array}$	

SEM of Sample 3

Sample 3 under SEM/EDX

Sample 3 under SEM/EDX

Sample 3 EDX

Sample 3 under EDX

Sample 3 under EDX

Conclusions from SEM/EDX

No separate particles revealing on V and Ca

- Vanadium always appears in minor proportions with large amounts of Ca and other elements (Ca, S, Al, Si and Fe)
 - Does not support the idea of V oxides
 - Does support the idea of Ca vanadates and other compounds

Conclusions

A Phase separations were relatively unsuccessful in concentrating V

-enrichment of 2.5

▲ Extended XRD examination suggested Ca₂V₂O7.2H₂O and possibly Na₃V₂O₃(SO₄)₄.

▲ A caveat for the researcher working with petcoke fired boilers is to check for additives, 100% firing of petcoke should not be assumed, and additives are frequently used to prevent fouling properties

Conclusions

WET extractions produced very little change in the sample besides hydrating CaO

Vanadium was still present as Ca Vanadium Oxides although different ones than seen previously

Only 0.013% of V was lost

Conclusions

- Elimination of CaO/CaSO₄ led to much higher V contents in the leachate 12% of V was lost
- The bulk of the V was present in the 5+ oxidation state, and it is believed that it was present mainly as (Mg, Ca, Na, K, Fe)V₂O₇.xH₂O and perhaps some Fe₄(VO₄)₄