

A Dual Fluid Bed Pilot Plant for Fuel Conversion and Co-firing Research

Fernando Preto Biomass & Renewables Group Leader

Advanced Combustion Technologies CANMET Energy Technology Centre – Ottawa Natural Resources Canada

Fluidized Bed Combustion Pilot Plant Research CANMET Energy Technology Centre Natural Resources Canada

1980s Mark II AFBC unit 40 cm x 40 cm

1990s CFBC unit 40 cm ID (coal)

1995-> BFB unit (1 m ID) B: Bubbling & Biomass

Beyond-> Need for research beyond combustion

- Circulating Fluidized Bed Unit:
 - 0.8 MW thermal capacity
 - refractory lined, 0.4 m ID ~ 7 m high
 - operating temperatures up to 1000 C
 - fluid. velocity to 8 m/s Bucket Automated NG burner Designed for coal:
 - 5 cm feed screw

New BFB Pilot Plant

1 MW Bubbling Fluidized Bed Unit: refractory lined, 1 m ID - 6 m high operating temperatures up to 1000 C fluidization velocity 1 – 3 m/s **NG warm-up burner Designed for biomass:** 25 cm overbed feed port 15 cm underbed feed port

CETC Biomass Gasification Concept: - Wood Chips

- Black Liquor

CETC Dual Fluid Bed Pilot Plant BFB Transport CFB

Temperature Changes for the Cold Coke Cyclone

Time

DUAL FLUID	BED HE	AT BA	LANCE	Ξ						
ETC			_		Heat I	055				
	At	tom								
	Mai	n		CANMET 1M	Reactor	\rightarrow	Steam + N	v2 –		
	Pur	ne N2								
	[HC Proce	ssing					
	HC	Feed					Cold Coke			
						Pr	oduct			
	н	ot Coke								
		Heat In	h = Heat	Out + H	eat Loss					
	D /	Tomp In	Tamp	Cra	Heat	Heet	Heat			
				Cp k l/kg/K						
HEAT SINKS	(kg/llour)		Out (C)	K0/Kg/K	KU/Kg	K5/11001	N V			
Main Steam	75	500	526	2 166	56.3	4224	12			
Atom Steam	6.7	250	526	2.166	201.2	2554	0.7		Hoat D	oquiro
Atom Steam	0.7	120	526	2.100	870 /	2004	0.7		neath	equire
N. Purge	10	25	526	1.0416	521.8	5218	0.0 1 /			
Ritumen Feed	318	20	526	1.0410	802.0	2830/6	78.0			
Ditamenti cea	010	010.7	520	1.700	002.0	200040	10.5			
Total Heat Reg'd	1	1			2732	295943	82.2			
•										
HEAT SOURCE		_			1					
Coke Circulation	5070 1	606	526	16	128	648973	180.3		Heat In	put
	0070.1	000	020		120			_		-
Feed Rate (kg/min)	5.3									

•

Time

1)

— TEW 220 — TEW 222 — TEW 224 — TEW 225 —

Co-Firing Biomass & Fluid Coke

Preparing biomass for co-firing involves "tuning" the fuel mix and "verifying" boiler operation so that there is little or no loss in total efficiency. Since biomass in general has significantly less sulfur than coke, there is an SO2 benefit and there may also be NOx reduction, but this has to be evaluated.

Investment levels are very site specific and are affected by the available biomass, determining handling, size reduction and drying facilities, and the type of burner modifications.

Ash Issues

Ash deposition and boiler tube corrosion can be an issue for some co-firing arrangements, depending on the biomass, ash chemistry, and operating conditions. Biomass can contain considerable alkali and alkalineearth elements and chlorine, which, when mixed with other gas components derived from coke such as sulphur compounds, promotes a different array of vapour and fine particulate deposition.

CONCERN: CFBC combustion of fluid coke is typically above 900 C. This is a potential problem for biomass ash agglomeration

PROXIMATE ANALYSIS (wt%)

	As Analyzed	Dry@105°C
Moisture	4.17	
Ash	3.31	3.45
Volatile	74.12	77.35
Fixed Carbon	18.40	19.20
ULTIMATE ANALYSIS (wt%)		
Carbon	48.55	50.66
Hydrogen	5.51	5.75
Nitrogen	0.26	0.27
Sulphur	<0.03	<0.03
Oxygen (Diff)	38.17	39.84
CALORIFIC ANALYSIS		
Cal/g	4614	4815
MJ/KG	19.32	20.16
BTU/LB	8305	8667

Proximate-ultimate analyses of Syncrude coke

	As analyzed	Dry@105°C	Dry Ash free
Proximate analysis Wt %			
Moisture	0.48		
Ash	6.28	6.31	
Volatile	6.34	6.37	6.80
Fixed carbon	86.90	87.32	93.20
Ultimate analysis Wt %			
Carbon	80.92	81.31	86.79
Hydrogen	1.66	1.67	1.78
Nitrogen	1.88	1.89	2.02
Sulphur	7.09	7.12	7.60
Oxygen (by diff.)	1.69	1.70	1.81
Calorific analysis			
MJ/kg	30.61	30.75	32.82

	Wood	Coke	Mix:50/50
Vel. m/s	5.4	4.0	5.2
02, %	4.6	5.6	4.3
CO, ppm	150	260	380
SO2, ppm	30	285	150
NOx	NA	90	NA

Ash Analyses & further work continuing....