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METHODOLOGIES OF SCALING

Scaling is carried out by

• Formulation and solution of the fundamental equations describing
the processes together with their boundary conditions

• Using these equations and boundaty conditions to formulate
dimensionless criteria Z1, Z2 …

Two procesesses I and II are similar when the dimensionless criteria
are equal

1, 1,

2, 2,

I II

I II

Z Z
Z Z

=

=



Bo Leckner 3

ON THE SCALING OF FB BOILERS 

Scaling from one size to another can be done in many
ways and for many purposes:

• Fluid dynamic scaling (from cold to hot conditions)

• Combustion scaling (from lab reactor to boiler)

• Boiler scaling (scale-up of boilers) 
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FLUID DYNAMIC SCALING
Based on the dimensionless form of the fluid dynamic

equations, including contituitive relationships: 
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FLUID DYNAMIC SCALING—EXAMPLE: 1/9th cold model

The beds

The particles

Pressure drops Pressure fluctuations
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COMBUSTION SCALING I: Simplifications

In combustion scaling most operation parameters are 
similar in Plant I and Plant II

• TI = TII   Temperature
• λI = λII Total excess-air ratio
• φI = φII Primary-zone stoichiometry
• Same fuel
• Same bed material
• uI ≈ uII Almost same fluidisation velocities
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COMBUSTION SCALING: FLUID DYNAMICS
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With the similar operation criteria in Plant I and II, most of 
the fluid dynamic criteria are similar. Only the geometry
(height L or width D) and Gs/(ρuo) remain.

The latter criterion is similar to the concentration cs at the 
top of the furnace (L):
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COMBUSTION SCALING: COMBUSTION

, 0 0 0/( )i v iDa R x c u=

( ) ( ) i,v
i

1div div grad Da
Pei iC C= +U

( ) ( )i i,hPe  div div grad Dai iC C= +U

where Da are the first and second Damköhler numbers 
or in general
Da=transport time/reaction time 

Drying, devolatilisaton and char combustion are to be 
compared with mixing of the fuel in the furnace. The 
dimensionless species transport equation

gives the dimensionless criteria

2
, 0 0/( )i h i iDa R x D c=
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COMBUSTION SCALING: HORIZONTAL

• Transport (mixing) time

• Devolatilisation time

• Char combustion time
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COMBUSTION SCALING: VERTICAL

, 0 0 0 , ,/( ) / /i v i I o I II o IIDa R x c u L u L u= => =

since R and c are already equal and xo=L. 

L/u is gas residence time (transport time). 

Particle residence time is nL/up, where n is the circulation
number and the particle velocity up=uo-ut.  

1/(1 )n η= −
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m

pd d
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+

and the cyclon efficiency
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INFLUENCE OF RESIDENCE TIME 

Temperature 850 oC

Oxygen concentration 5%

dp50 =27 µm

L=30 m
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CYCLONE SCALING

The cyclone is influenced by a great number of parameters

• particle properties
• solids as a whole (e.g. concentration)
• gas properties
• cyclone configuration
• force field

But with some simplification (low-loaded cyclones) for similar
geometries the efficiency can be expressed as
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CYCLONE SCALING

Above a certain Re the efficiency scaling is 
even more simplified

( ) ( )pd f Stkη =
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CYCLONE SCALING: HIGH-LOADED CYCLONES
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According to one of Muschelknautz’ formulations, the 
cyclone efficiency of a cyclone with inlet loading co is  

where co,L is a limiting loading, separating out the 
”saltation” part from the ”inner vortex” part. Both parts 
depend on Stokes number, and for scaling

,( ) ( , / )p o L od f Stk c cη =
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THE IMPACT OF THE CYCLON
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At the same combustion conditions the fuel powers of 
combustors I an II are
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Stokes number scaling

The cyclon efficiency is strongly
proportional to the size of equipment
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COMPARISON BETWEEN TWO PLANTS USED FOR 
COMBUSTION SCALING
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EXAMPLE: (Knöbig et al.) COMPARISON OF EMISSIONS 
FROM LAB RIG AND BOILER

CARBON MONOXIDE NITRIC OXIDE
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EXAMPLE (Alliston and Wu): 
DESULPHURIZATION 
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In comparisons between desulphurisation with the 
same coal and limestone in a test rig and boilers, the 
test rig always showed the best performance!
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CLASSICAL BED SCALING

v
dCU Da
dZ

=

In the Z=z/L direction the species transport equation is

and in dimensional form
dcu R
dz

=

For the two-phase bed this can be written

0( ) ( )b
b mf b gg b b be b e

dcu u R a k c c
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or in dimensionless form
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CLASSICAL BED: DIMENSIONLESS CRITERIA

0 0= / ;mfu u uβ −

/ ;gs gs e oDa K C L u=

/ ;gg gg b oDa K C L u=•Gas-gas Damköhler number

•Gas-solid Damköhler number

•Bed Number of Transfer Units

•Gas-flow partition number
0/ ;b b beNTU a k L uε=

A most simplified result
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CFB BOILER SCALE-UP

Capacity of CFBCs worldwide (2005)
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Diagram from M. Hupa 2005
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MODULAR SCALE-UP (Foster Wheeler)
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ALLOCATION OF HEAT TRANSFER SURFACE

Size L

1/L
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BOTTOM REGIONS FROM VARIOUS 
MANUFACTURERS
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Net capacity of thermal power plants in EU-25 by 
fuel and age 2006
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Comparison between conceptual designs

10 m wide to allow penetration of secondary air, pant-leg 
in Alstom. Less than 50 m high, and as wide as needed 
for the power of 2.5-4 MWth/m2 cross-section area

Size

External heat exchangers 
(No size limitation)

Internal walls+INTREX (10-20 
MWth each), 8 consisting 
of two in series

Bed cooling except 
walls

68Separators

600/620604/621Steam 
temperature,oC

270 (header outlet)315 (design pressure)Steam pressure bar

450-600800Size MWe

Alstom [26]Foster Wheeler [25]Item
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CONCLUSIONS
• Strict scaling is impossible.

• Fluid dynamical scaling is useful to represent the flow
patterns of hot large-scale boilers in cold small-scale
test-rigs.

• Combustion scaling is possible if reactors with similar
operation data are compared. Often, the horzontal
dimension cannot be scaled, but the vertical can.

• The influence of cyclone operation on test results has 
not been stated in literature

• Boiler scaling utilises building-stones from smaller scales
that are duplicated to obtain larger scales.
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