59th Technical Meeting, IEA-FBC Czenstachowa 2009

This presentation is taken partly from a chapter by the same authors in M. Lackner Ed. Scale-up in Combustion, Verlag ProcessEng Engineering GMbH, ISBN: 978-3-902655-04-2

COMBUSTION SCALING OF FBC

Bo Leckner

Department of Energy and Environment, Chalmers University of Technology, Göteborg, Sweden

Pal Szentannai and Franz Winter

Technical University, Vienna, Austria

METHODOLOGIES OF SCALING

Scaling is carried out by

- Formulation and solution of the fundamental equations describing the processes together with their boundary conditions
- Using these equations and boundaty conditions to formulate dimensionless criteria Z₁, Z₂...

Two procesesses I and II are similar when the dimensionless criteria are equal

$$Z_{1,I} = Z_{1,II}$$
$$Z_{2,I} = Z_{2,II}$$

ON THE SCALING OF FB BOILERS

Scaling from one size to another can be done in many ways and for many purposes:

- Fluid dynamic scaling (from cold to hot conditions)
- Combustion scaling (from lab reactor to boiler)
- Boiler scaling (scale-up of boilers)

FLUID DYNAMIC SCALING

Based on the dimensionless form of the fluid dynamic equations, including contituitive relationships:

$$\frac{u_0^2}{gL}, \frac{\rho_s}{\rho_f}, \frac{\rho_s u_0 d_p^2}{\mu L}, \frac{\rho_f u_0 L}{\mu}, \frac{G_s}{\rho_s u_0}, geometry, \varphi, PSD \qquad 5 \text{ Numbers}$$

Simplifications

$$\frac{u_0^2}{gL}, \frac{\rho_s}{\rho_f}, \frac{u_0}{u_{mf}}, \frac{G_s}{\rho_s u_0}, geometry, \varphi, PSD \qquad 4 \text{ Numbers}$$

Further simplifications

$$\frac{u_0^2}{gL}, \frac{u_0}{u_{mf}}, \frac{G_s}{\rho_s u_0}, geometry, \varphi, PSD$$

3 Numbers

FLUID DYNAMIC SCALING—EXAMPLE: 1/9th cold model

COMBUSTION SCALING I: Simplifications

In combustion scaling most operation parameters are similar in Plant I and Plant II

- $T_I = T_{II}$
- $\lambda_{\rm I} = \lambda_{\rm II}$
- $\phi_I = \phi_{II}$

- Temperature Total excess-air ratio
- Primary-zone stoichiometry

- Same fuel
- Same bed material
- $u_I \approx u_{II}$ Almost same fluidisation velocities

COMBUSTION SCALING: FLUID DYNAMICS

With the similar operation criteria in Plant I and II, most of the fluid dynamic criteria are similar. Only the geometry (height L or width D) and $G_s/(\rho u_o)$ remain.

The latter criterion is similar to the concentration c_s at the top of the furnace (L):

$$\frac{G_s}{\rho_s u_0} = \frac{\rho_s (1-\varepsilon)(u_0 - u_t)}{\rho_s u_0} \approx 1 - \varepsilon = c_s(L)$$

On an average

$$\overline{c}_s = \frac{\Delta P}{g\rho_s L}$$

which gives

 $\Delta P_I = L_A \Delta P_{II} / L_{II}$

COMBUSTION SCALING: COMBUSTION

Drying, devolatilisaton and char combustion are to be compared with mixing of the fuel in the furnace. The dimensionless species transport equation

$$\operatorname{div}(\overline{\mathbf{U}}C_{i}) = \frac{1}{\operatorname{Pe}_{i}}\operatorname{div}(\operatorname{grad} C_{i}) + \operatorname{Da}_{i,v}$$
$$\operatorname{Pe}_{i}\operatorname{div}(\overline{\mathbf{U}}C_{i}) = \operatorname{div}(\operatorname{grad} C_{i}) + \operatorname{Da}_{i,h}$$

gives the dimensionless criteria

$$Da_{i,v} = R_i x_0 / (c_0 u_0)$$
 $Da_{i,h} = R_i x_0^2 / (D_i c_0)$

where Da are the first and second Damköhler numbers or in general Da=transport time/reaction time Bo Leckner

COMBUSTION SCALING: HORIZONTAL

• Transport (mixing) time

$$\tau_{disp} = x^2 / (2D_h)$$

- Devolatilisation time
- Char combustion time

$$\tau_{dev} = a_1 d_p^{a_2}$$
$$\tau_{char} = \frac{\rho_c d_p^2}{4M_c ShDc_{ox}}$$

COMBUSTION SCALING: VERTICAL

$$Da_{i,v} = R_i x_0 / (c_0 u_0) \Longrightarrow L_I / u_{o,I} = L_{II} / u_{o,II}$$

since R and c are already equal and x_0 =L.

L/u is gas residence time (transport time).

Particle residence time is nL/u_p , where n is the circulation number and the particle velocity $u_p=u_o-u_t$.

$$n = 1/(1 - \eta)$$

and the cyclon efficiency

$$\eta = \frac{1}{1 + \left(d_{p,50} / d_{\mathrm{P}}\right)^m}$$

INFLUENCE OF RESIDENCE TIME

CYCLONE SCALING

The cyclone is influenced by a great number of parameters

- particle properties
- solids as a whole (e.g. concentration)
- gas properties
- cyclone configuration
- force field

But with some simplification (low-loaded cyclones) for similar geometries the efficiency can be expressed as

$$\eta(d_p) = f(\text{Re}, Stk)$$
$$Stk = \frac{d_{p50}^2 u_{in} \Delta \rho}{18 \mu D}$$

Above a certain Re the efficiency scaling is even more simplified

$$\eta(d_p) = f(Stk)$$

CYCLONE SCALING: HIGH-LOADED CYCLONES

According to one of Muschelknautz' formulations, the cyclone efficiency of a cyclone with inlet loading c_o is

$$\eta = (1 - \frac{c_{o,L}(d_{p,50})}{c_o}) + \frac{c_{o,L}(d_{p,50})}{c_o} \sum_{i=1}^N \eta_i m_i$$

where $c_{o,L}$ is a limiting loading, separating out the "saltation" part from the "inner vortex" part. Both parts depend on Stokes number, and for scaling

$$\eta(d_p) = f(Stk, c_{o,L} / c_o)$$

THE IMPACT OF THE CYCLON

At the same combustion conditions the fuel powers of combustors I an II are

Stokes number scaling

The cyclon efficiency is strongly proportional to the size of equipment

 $\left(\frac{d_{p50,I}}{d_{p50,II}}\right)^4 = \frac{P_I}{P_{II}}$

COMPARISON BETWEEN TWO PLANTS USED FOR COMBUSTION SCALING

	TUHH	CTH	Flensburg
Volume of combustion chamber m ³	0.13	31.4	590
Volume of cyclone including the	0.024	12.4	490
entry duct, m3			
Volume of after-burner chamber, m3	0.13	10.7	_
Gas residence time in	2.6	2.2	3.8
combustion chamber, τ_{ee} , s			
Gas residence time in cyclone, τ_c , s	0.5	0.9	3.2
Gas residence time in	2.7	0.8	_
after-burner chamber, τ_{ac} , s			
Gas residence time in burn-out zone,	3.2	1.6	3.2
$\tau_{\rm c} + \tau_{\rm sc}$, s			
Ratio of gas residence times			
τ_c / τ_{cc}	0.2	0.4	0.8
$\tau_{c} + \tau_{sc}/\tau_{cc}$	1.2	0.7	0.8

Gas residence times in CFB units of different scales

EXAMPLE: (Knöbig et al.) COMPARISON OF EMISSIONS FROM LAB RIG AND BOILER

CARBON MONOXIDE

NITRIC OXIDE

EXAMPLE (Alliston and Wu): DESULPHURIZATION

In comparisons between desulphurisation with the same coal and limestone in a test rig and boilers, the test rig always showed the best performance!

CLASSICAL BED SCALING

In the Z=z/L direction the species transport equation is

$$U \frac{dC}{dZ} = Da_v$$
 and in dimensional form $u \frac{dc}{dz} = R$

For the two-phase bed this can be written

$$\varepsilon_{b}(u_{0} - u_{mf})\frac{dc_{b}}{dz} = \varepsilon_{b}R_{gg} - \varepsilon_{b}a_{b}k_{be}(c_{b} - c_{e})$$

$$\varepsilon_{e}u_{mf}\frac{dc_{e}}{dz} = (1 - \varepsilon_{e})(1 - \varepsilon_{b})\sigma_{c}R_{gs} + \varepsilon_{b}a_{b}k_{be}(c_{b} - c_{e})$$

or in dimensionless form

$$\varepsilon_{b}\beta \frac{dC_{b}}{dZ} = \varepsilon_{b}Da_{gg} - NTU(C_{b} - C_{e})$$

$$\varepsilon_{e}(1 - \beta)\frac{dC_{e}}{dZ} = (1 - \varepsilon_{e})(1 - \varepsilon_{b})\sigma_{c}Da_{gs} + NTU(C_{b} - C_{e})$$

CLASSICAL BED: DIMENSIONLESS CRITERIA

- •Gas-gas Damköhler number
- •Gas-solid Damköhler number
- •Bed Number of Transfer Units
- •Gas-flow partition number

$$Da_{gg} = K_{gg}C_bL/u_o;$$

$$Da_{gs} = K_{gs}C_eL/u_o;$$

$$NTU = \varepsilon_b a_b k_{be}L/u_0;$$

$$\beta = u_0 - u_{mf}/u_0;$$

$$C_{z=L} = exp(-\frac{Da_{gs}NTU}{Da_{gs} + NTU})$$

CFB BOILER SCALE-UP

Capacity of CFBCs worldwide (2005)

MODULAR SCALE-UP (Foster Wheeler)

ALLOCATION OF HEAT TRANSFER SURFACE

BOTTOM REGIONS FROM VARIOUS MANUFACTURERS

Solids return leg External circulation openings

INTREX[®]

Net capacity of thermal power plants in EU-25 by fuel and age 2006

Comparison between conceptual designs

Item	Foster Wheeler [25]	Alstom [26]	
Size MW _e	800	450-600	
Steam pressure bar	315 (design pressure)	270 (header outlet)	
Steam temperature,ºC	604/621	600/620	
Separators	8	6	
Bed cooling except walls	Internal walls+INTREX (10-20 MW _{th} each), 8 consisting of two in series	External heat exchangers (No size limitation)	
Size	10 m wide to allow penetration of secondary air, pant-leg in Alstom. Less than 50 m high, and as wide as needed for the power of 2.5-4 MW _{th} /m ² cross-section area		

CONCLUSIONS

- Strict scaling is impossible.
- Fluid dynamical scaling is useful to represent the flow patterns of hot large-scale boilers in cold small-scale test-rigs.
- Combustion scaling is possible if reactors with similar operation data are compared. Often, the horzontal dimension cannot be scaled, but the vertical can.
- The influence of cyclone operation on test results has not been stated in literature
- Boiler scaling utilises building-stones from smaller scales that are duplicated to obtain larger scales.

REFERENCES

- L. R. Glicksman, M.R. Hyre, P.A. Farrell, Dynamic similarity in fluidization, Int. J. Multiphase Flow 20 Suppl., 331-386 (1994).
- G. Damköhler, Einflüsse der Strömung, Diffusion und des Wärmeüberganges auf die Leistung von Reaktionsöfen, Zeitschrift der Elektrochemie 42, 846-862 (1936).
- WPM. van Swaaij, Chemical reactors, in Fluidization, Second Edition, Eds. JF Davidson, R. Clift, D. Harrison, AP, London (1985), pp. 595-629.
- S.J. Goidich, O. Sippu, A.C. Bose, Integration of ultra-supercritical OTU and CFB boiler technologies, Proceedings, 19th International Conference on Fluidized Bed Combustion, Ed. F. Winter, Vienna, May 2006.
- G.N. Stamatelopoulos, J. Seeber, R. Skowyra, Advancement in CFB technology: a combination of excellent environmental performance and high efficiency, Proceedings, 18th International Conference on Fluidized Bed Combustion, Ed. D.W. Geiling, ASME, Paper FBC2005-78081 (2005).
- F. Johnsson, A. Vrager, B. Leckner, Solids flow pattern in the exit region of a CFBfurnace - influence of exit geometry, 15th Int. Conference on Fluidized Bed Combustion, Savannah, 1999.
- B. Leckner, P Szentannai, F. Winter, Scale-up of fluidized-bed combustion in M. Lackner Ed. Scale-up in Combustion, Verlag ProcessEng Engineering GMbH, ISBN: 978-3-902655-04-2
- A.C. Hoffmann, L.E. Stein, Gas Cyclones and Swirl Tubes, Springer, Berlin, 2008.