

59th International Energy Agency Fluidized Bed Conversion Implementing Agreement

PRELIMINARY EXPERIENCE WITH A SMALL PILOT- SCALE OXYFUEL-CFB FACILITY

Wojciech NOWAK Tomasz CZAKIERT

42-200 Czestochowa, ul. Dabrowskiego 73, POLAND · tel./fax: +48 34 3250933

₩ \mathbb{X} T7 т12 FLUE GAS DP8 SAMPLING Τ6 DP5 PORT1 C TD HE FG5 FAN. ć T11 HEATERS DP4 C O M T5 BUST ISA3 'BAG' FG4 HOUSE HEATER2 Ó N T10 СН Н EATERA Τ4 D O V N (MBER SA2 DP3 FG3 DP7 HEATER1 C OXYGEN LOOP MIXER SEAL AIR M M DP6 TЗ lò <u>T9</u> SA1 FG2 P2 FUEL DP2 ₩3--FA-FEED T2 POINT L P1 DRAIN PORT DRAIN MFC M PORT DP1 T1 GRID -Τ8 MEC PAH2 \|||||||SAH ||||||Ч MIXER OXYGEN -BA DRAIN EPAH1 PORT

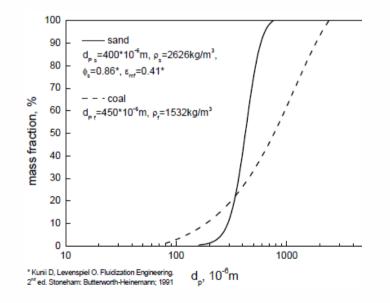
SMALL PILOT-SCALE OXYFUEL-CFB FACILITY 0,1MWth

BA - bottom ash

CM - circulating material

- DP pressure drop measurement
- FA fly ash
- FG flue gas sampling
- HE heat exchanger
- MFC mass flow controller
- P absolute pressure measurement

PAH - primary air heater


- SA secondary air
- SAH secondary air heater
- T temperature measurement

ANALYSES OF SOLIDS

PROPERTIES OF FUEL

Fuel	LHV	Proximate Analysis			Ultimate Analysis					
		Moisture	VM	FC (by differ.)	Ash	С	S	Н	Ν	O (by differ.)
	kJ/kg	%	%	%	%	%	%	%	%	%
bitumin. coal	21055	6,8	27,5	43,5	22,2	57,8	1,28	3,54	0,69	7,69

PARTICLE SIZE DISTRIBUTION OF FUEL AND BED MATERIAL

XRF ANALYSIS OF FUEL

element	fraction			
	%			
Al - aluminum	≈ 5,0			
Si - silicon	9,4±0,5			
P - phosphorus	< 0,14 (< detect. threshold)			
S - sulfur	0,53 ± 0,02			
Cl - chlorine	0,087 ± 0,015			
K - potassium	$1,47 \pm 0,07$			
Ca - calcium	$0{,}61\pm0{,}03$			
Ti - titanium	$0,\!244 \pm 0,\!007$			
V - vanadium	0,0047 ± 0,0007			
Cr - chromium	0,013 ± 0,001			
Mn - manganese	0,0266 ± 0,0014			
Fe - iron	1,76 ± 0,075			
Co - cobalt	0,0139 ± 0,0013			
Ni - nickel	0,0025 ± 0,0003			
Cu - copper	0,0011 ± 0,0002			
Zn - zinc	0,0135 ± 0,0006			
Sn - tin	< 0,00045 (< d. t.)			
Sb - antimony	< 0,0005 (< d. t.)			
Pb - lead	0,0074 ± 0,0003			
Na* - sodium	0,54 ± 0,03			
Mg* - magnesium	$0,53\pm0,03$			

SCHEDULE OF INVESTIGATIONS

		Air (21%O ₂ -79%N ₂)	28%O ₂ -72%N ₂	35%O ₂ -65%N ₂	
	v=3,65m/s	v=4,25m/s	v=4,85m/s	v=4,85m/s	v=4,85m/s
λ=1,1	\checkmark	\checkmark	\checkmark	\checkmark	✓/ X
λ=1,2	\checkmark	✓	\checkmark	~	\checkmark
λ=1,3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

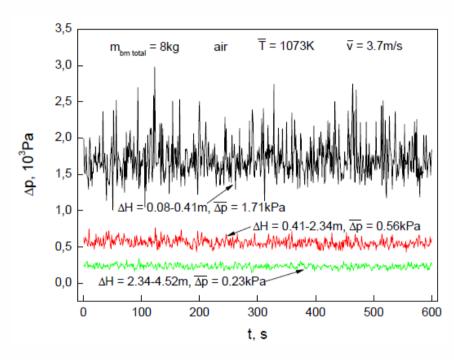
CALCULATIONS

✓ Conversion ratio of combustible sulfur contained in fuel to SO₂

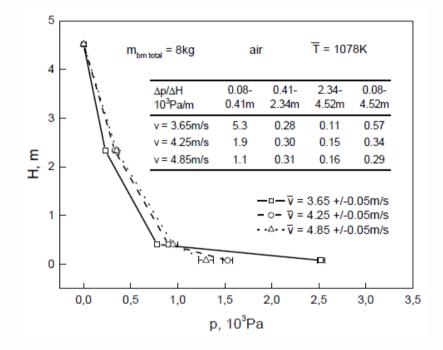
$$CR_{S->SO2} = \frac{\frac{S_{fg}}{C_{fg}^{CO2+CO}}}{\frac{S_{fuel}^{comb}}{C_{fuel}}} \left[\frac{\frac{\text{kmol}_{S}}{\text{kmol}_{C}}}{\frac{\text{kmol}_{S}}{\text{kmol}_{C}}} = - \right]$$

c SO2

 Molar ratio of S (fixed in SO₂) / C (fixed in CO₂ & CO) in flue gas

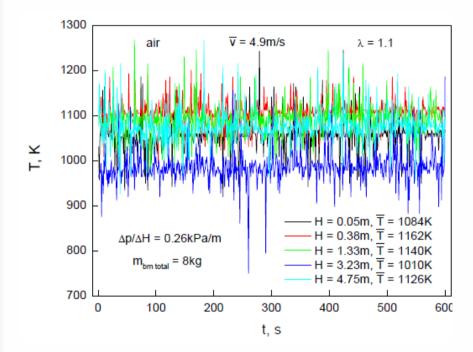

$$\frac{S_{fg}^{SO2}}{C_{fg}^{CO2+CO}} = \frac{\frac{[SO_2]}{10^6} \cdot \frac{1}{22.4}}{[CO_2] \cdot 10^4 + [CO]} \cdot \frac{1}{22.4} = \frac{[SO_2]}{10^4 \cdot [CO_2] + [CO]}$$
$$\left[\frac{\frac{m_N^3 \text{ so2}}{m_N^3 \text{ fg}} \cdot \frac{kmol_{SO2}}{m_N^3 \text{ so2}}}{\frac{m_N^3 \text{ so2}}{m_N^3 \text{ so2}}} = \frac{\frac{kmol_{SO2}}{m_N^3 \text{ fg}}}{\frac{kmol_{CO2}}{m_N^3 \text{ fg}} + \frac{kmol_{CO2}}{m_N^3 \text{ fg}}} = \frac{\frac{kmol_{SO2}}{m_N^3 \text{ fg}}}{\frac{kmol_{CO2}}{m_N^3 \text{ fg}} + \frac{kmol_{CO2}}{m_N^3 \text{ fg}}} = \frac{kmol_{SO2}}{m_N^3 \text{ fg}}\right]$$

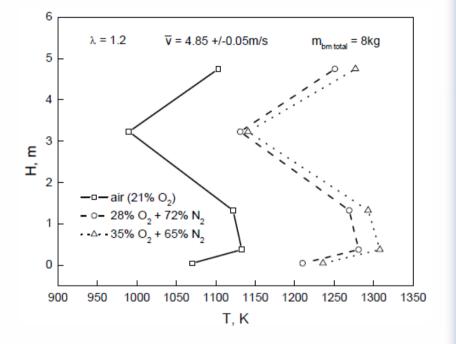
• Molar ratio of combustible S / C in fuel


$$\frac{S_{fuel}^{comb}}{C_{fuel}} = \frac{\frac{S_{fuel}^{comb}}{32}}{\frac{C_{fuel}}{12}} \begin{bmatrix} \frac{kg_s}{kg_{fuel}} \cdot \frac{kmol_s}{kg_s} \\ \frac{kg_c}{kg_{fuel}} \cdot \frac{kmol_c}{kg_c} \end{bmatrix}$$

EXPERIMENTAL CONDITIONS

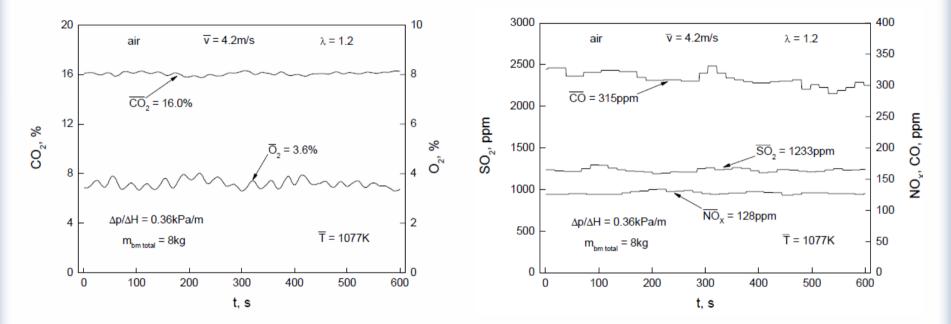
PRESSURE DISTRIBUTION


- ✓ The highest ∆p & the strongest pressure fluctuations in the grid zone (dense phase)
- ✓ 3-times lower pressure drop & much lighter fluctuations in the dilute zone
- ✓ The lowest ∆p & the lightest pressure fluctuations at the level of cyclone inlet


- ✓ More uniform distribution of bed material inside combustion chamber for higher gas velocity
- ✓ Declining solids concentration in the grid zone and increasing conc. in the upper part of furnace
- ✓ Higher amount of bed material in return leg (decreasing total ∆p in combustion chamber)

EXPERIMENTAL CONDITIONS

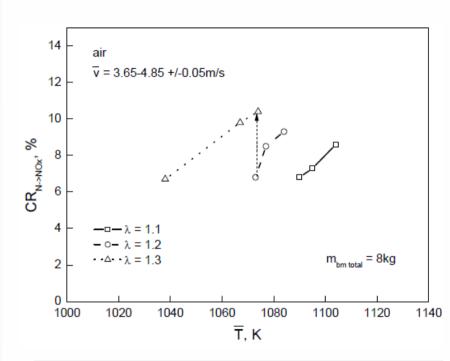
TEMPERATURE DISTRIBUTION


 An example of temperature oscillations measured at 5 different levels along height of combustion chamber

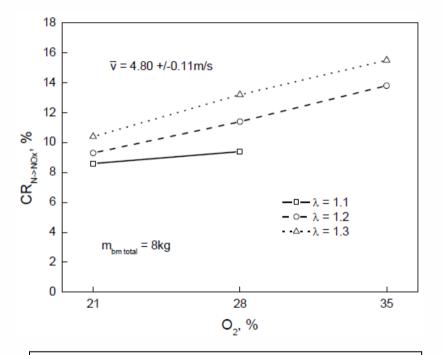
- ✓ Strong increase in temperature associated with elevated partial pressure of oxygen (up to 35%vol.) as a result of different chamber load
- Lighter insulation in the upper part of the furnace (enhanced heat transfer) "simulates"
 Wing-Walls operation in commercial CFB's

RESULTS OF INVESTIGATIONS

FLUE GAS COMPOSITION

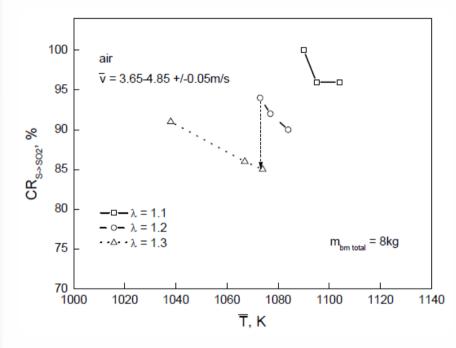


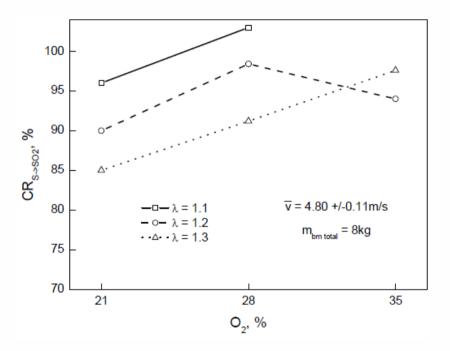
✓ An example of fluctuations of flue gas components concentration (CO₂, CO, NO_x, SO₂ i O₂) measured in the outlet of cyclone separator


✓ The results point at stable operation of OxyFuel-CFB Test Rig

RESULTS OF INVESTIGATIONS

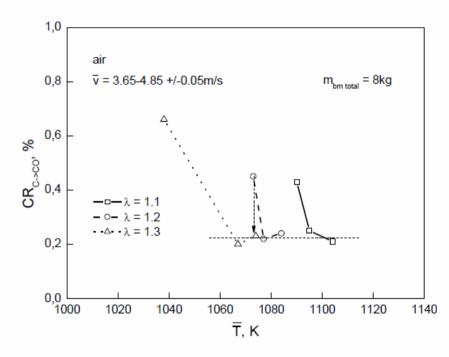
NO_X FORMATION

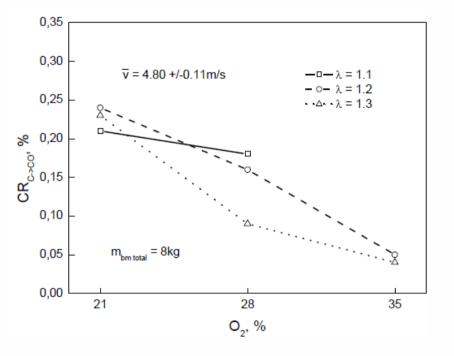

- ✓ Higher $CR_{N->NOx}$ associated with increase of temperature (regardless of λ)
- ✓ Higher (> 50%) CR_{N->NOx} associated with increase of excess oxygen in reaction zone (at stable temperature)


- ✓ Higher CR_{N->NOx} associated with increase of oxygen concentration in gas mixture (in parallel with increase in temperature)
- ✓ Higher $CR_{N->NOx}$ associated with increase of λ (in parallel with decrease in temperature)

RESULTS OF INVESTIGATIONS

SO₂ FORMATION


- ✓ Lower CR_{S->SO2} associated with increase of temperature (regardless of λ) – effect of bonding of S with Ca & Mg contained in fuel-ash
- ✓ Lower CR_{S->SO2} associated with increase of excess oxygen in reaction zone (at stable temperature) – effect of oxidation of S directly to SO₃


- ✓ Higher CR_{S->SO2} in oxygen enriched environment (high temperature environment) – result of oxidation of S contained in H₂S in flue gas
- Lower CR_{S->SO2} associated with increase of λ (in parallel with decrease in temperature) effect of oxidation of S to SO₃

RESULTS OF INVESTIGATIONS

CO FORMATION

- ✓ Decline of $CR_{C->CO}$ associated with increase in temperature (regardless of λ)
- ✓ Decline of CR_{C->CO} associated with increase in excess oxygen (at stable temperature)
- ✓ Minimum level of CR_{C->CO} ca. 0,2% for air conditions

 ✓ Strong decline of CR_{C->CO} under oxygenenriched conditions (high temperature conditions)

MAIN CONCLUSIONS

CZESTOCHOWA UNIVERSITY OF TECHNOLOGY - Faculty of Environmental Protection and Engineering

- ✓ Higher conversion ratio of fuel-N to NO_X (NO+NO₂) associated with increase of the following parameters: oxygen concentration in gas mixture, excess oxygen in reaction zone, temperature.
- ✓ Higher conversion ratio of combustible S to SO₂ in oxygen-enriched environment, probably as a result of oxidation of H₂S contained in flue gas.

Lower sulfur conversion ratio associated with increase of excess oxygen or increase in temperature, probably as an effect of oxidation of S directly to SO_3 or bonding of S with Ca and Mg contained in fuel-ash, respectively.

✓ Strong decline of conversion ratio of C to CO under oxygen-enriched conditions and slight decline of carbon conversion ratio associated with increase of excess oxygen or increase in temperature.

THANK YOU FOR YOUR ATTENTION

42-200 Czestochowa, ul. Dabrowskiego 73, POLAND · tel./fax: +48 34 3250933