Dual Fluidised Bed for Catalytic Cleaning of Biomass gas

Aim of research

- Continuous gas cleaning by changing chemical structures of tars
- Gas reactions in a bench scale system of dual fluidised beds, catalytic bed material with regeneration
 - Raw gas from Chalmers biomass gasifier
 - Synthetic gases and tars
- Optimisation towards SNG-production
 - Prevent the breaking down of methane
 - Controlling H2/CO-fraction
New gas cleaning methods, Why!

- Tars; Condensable hydrocarbons (single ring to 5-ring aromatic compounds)
- Fouling of downstream equipment
- Conventional gas conditioning: removal of tars by condensation \rightarrow Thermodynamic penalty
- Deactivation of catalysts, carbon fouling

Reactor system

$$C_nH_m + n MeO \rightarrow n CO + \frac{m}{2} H_2 + n Me$$

$$n Me + \frac{n}{2} O_2 \rightarrow n MeO$$
Solid-Phase Adsorption (SPA)

Addition of internal standard

Product gas → SPA → Elutropic solvent desorption → GC-FID

Aromatics

Phenolics
Reaction mechanisms

\[C_n H_m + \frac{n}{2} O_2 \rightarrow nCO + \frac{m}{2} H_2 \] Partial Oxidation

\[C_n H_m + x \ H_2 O \rightarrow \left(n + \frac{x}{2} \right) H_2 + n \ \text{CO} \] Steam reforming

\[C_n H_m \rightarrow n \ C + \left(\frac{m}{2} \right) H_2 \] Carbon formation

\[C_n H_m + \left(n + \frac{m}{4} \right) O_2 \rightarrow n \ CO_2 + \left(\frac{m}{2} \right) H_2 O \] Combustion

How to control oxygen transfer

Fluid dynamics in the system
• Solid circulation rate
 - Too much oxygen → no product gas
 - Too little oxygen → carbon fouling of catalysts

Solution 1: Controlled gas environment in air reactor

Solution 2: Mix inert particles with the catalysts

Separation between bed materials?
Inert particles and catalysts
(Ilumenite and Sand)

Cold System identical in size

- Fluidization Media
 - Air
 - Helium (scaling laws by Glicksman)

- Solid Circulation Rate
 - Particle size of bed material, round sand
 - 90 < dp < 250 μm
 - Mixing of bed materials, ilumenite and sand

- Pressure Mapping
 - Optimizing pressure sensor setup
 - Controlling solid rate circulation from pressure signal
Experiments in hot system

Operation
- 56 hours of bed circulation, mixed bed material
- 36 hours of raw gas operation

Sand and oxygen active components
- Ilumenite
- Manganese oxide
- Nickel oxide

<table>
<thead>
<tr>
<th>Temperature</th>
<th>N₂</th>
<th>C₂H₆</th>
<th>C₂H₄</th>
<th>C₂H₂</th>
<th>CH₄</th>
<th>CO₂</th>
<th>CO</th>
<th>H₂</th>
<th>Tars</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw gas</td>
<td>11</td>
<td>12</td>
<td>24</td>
<td>16</td>
<td>33</td>
<td>35</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>700°C</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>750°C</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>800°C</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Fredrik Lind Division of Energy Conversion
Conclusions

First experiments show:
- Tar composition is effected by the reformer system
- Regeneration of the catalysts is working
- Gas composition can be controlled
 Ilumenite \rightarrow $\text{H}_2/\text{CO} \approx 3$