POLLUTANTS FROM WASTE AND COAL CO-COMBUSTION IN THE CFB & BFB

RAFAŁ RAJCZYK, WOJCIECH NOWAK

Częstochowa University of Technology Faculty of Environment Engineering and Protection ul. Dąbrowskiego 73, 42-200 Częstochowa, Poland

IEA – FBC Workshop 'Future Challenges for Waste Combustion and Co-combustion in FBC' May, 24, 2004, Vienna, Austria

- WASTE COMBUSTION AND CO-COMBUSTION GIVES AN OPPORTUNITY TO SPLIT WASTE UTILIZATION WITH THE PRODUCTION OF ENERGY. FOR THIS PURPOSE FLUIDIZED BED TECHNOLOGY IS ONE OF THE MOST EFFICIENT PROCESS. HOWEVER, COMBUSTION OF WASTE COULD BE ALSO A SIGNIFICANT SOURCE OF POLLUTANTS.
- ISSUE: MICROPARTICLE EMISSIONS (PM 2.5, PM 10), OTHER POLLUTANTS (SO₂, NO_x, CO, HEAVY METALS CONTENT IN THE FLY ASH).

LABORATORY STAND WITH CFB AND BFB

- Column Ø5cm in diameter,
- Gas velocity: $u_B=3,2$ m/s (BFB) and $u_F=4,8$ m/s (CFB),
- Samples of fuel: 1g and 2g,
- Temperature controlled automatically; t=850°C ±10°C,
- Equipped with *Maihak* and *Kamika* analyzers,
- Bed material: silica sand of dp_{50} =80 μ m and d_{min} >63 μ m

LABORATORY STAND SCHEME

- 1. Air compressor
- 2. Ball valve
- 3. Flow meter
- 4. Preheater
- 5. Grid
- 6. Fuel feeder
- 7. Fuel
- 8. Heaters
- 9. Thermal insulation
- 10. Heaters control system
- 11. Combustion chamber
- 12. Cyclone
- 13. Feed valve
- 14. Drain valve
- 15. Flow regulating valve
- 16. Exhaust gas
- 17. Probe
- 18. Analyzers
- 19. Data storage
- **T1-T5** Thermocouples

MICROPARTICLES ANALYZER (IPS-K)

- Infrared Particle Sizer System,
- Range: 0,35 ÷300 µm,
- Fulfilling ISO 9096 and PN-Z-04030-7 requirements.

RESEARCH

STAGE 1: POLLUTANT EMISSIONS FROM 6 WASTE FUEL COMBUSTION IN THE CFB

Fuel 1: granulated waste coal

Fuel 2: hard coal sludge

Fuel 3: refused coal 0-10mm

Fuel 4: refused hard coal 0-10mm

Fuel 5: granulated coal with addiction of sewage sludge (H-34)

Fuel 6: refused hard coal 0-40mm

RESULTS OF PROXIMATE ANALYSIS

Parameter		Fuel 1	Fuel 2	Fuel 3	Fuel 4	Fuel 5	Fuel 6
Moisture (total)	%	22,4	23,5	6,2	8,4	7,9	5,1
Moisture (air dried)	%	1,5	1,1	0,6	0,9	3,5	0,5
S	%	0,67	0,69	0,50	0,64	0,80	0,29
С	%	29,1	36,4	13,9	16,4	25,7	19,9
Ash	%	40,6	30,6	72,6	67,2	54,2	65,5
Fixed carbon	%	6,9	12,1	4,3	5,0	9,4	11,7
Volatiles	%	17,3	21,3	12,3	13,5	25,4	14,0
НΗV	kJ/kg	11650	15060	5000	5750	9960	7710
LHV	kJ/kg	10410	13720	4550	5190	8860	7190

HEAVY METALS CONTENT IN THE FLY ASHES (PPM)

Element	Fuel 1	Fuel 2	Fuel 3	Fuel 4	Fuel 5	Fuel 6
Pb	2100	1910	2270	2200	2120	2300
As	62	44	46	25	27	33
Zn	333	167	339	293	1090	48
Ni	93	112	97	130	76	131
Со	34	36	36	34	33	35
Mn	437	377	537	536	399	449
Cr	121	187	163	181	167	258
Cd	74	55	58	13	51	60

MICROPARTICLE EMISSIONS

VOLATILE ASH EMISSIONS

Conversion of gaseous pollutants

CONCLUSIONS (STAGE 1)

- WASTE FUELS COULD BE CO-COMBUSTED WITH COAL,
- COAL SLUDGE (FUEL 2) COMBUSTION RESULTED IN RELATIVELY HIGH VOLATILE ASH AND MICROPARTICLES EMISSION,
- FUEL 6 NEEDS GRINDING BEFORE UTILIZATION IN THE CFB BOILER,
- POOR CONVERSION OF C WAS OBSERVED,
- HIGH CONTENT OF PB IN THE FLY ASHES.

STAGE 2: EMISSIONS FROM CO-COMBUSTION OF WASTE WITH HARD COAL IN THE BFB

Waste from paper mill facility (dried sludge from waste-paper discolourization)

	Moisture (total)	Moisture (air dried)	С	S	Ash	Volatiles	нну	LHV
Fuel	[%]	[%]	[%]	[%]	[%]	[%]	[kJ/kg]	[kJ/kg]
Waste	50,0	0,5	5,8	0,07	12,1	8,1	3650	1360
Coal	8,4	0,9	47,9	1,6	19,6	22,9	22460	19730

Content of selected elements in waste, coal and their ashes

Element	Unit	Co	oal	Waste		
		Fuel	Ash	Fuel	Ash	
Pb	[mg/kg]	-	-	-	-	
As	[mg/kg]	-	54,4	-	0,94	
Zn	[mg/kg]	1418	372	71,1	28,3	
Ni	[mg/kg]	25,3	142	24,9	25,9	
Со	[mg/kg]	21,4	40,8	18,4	19,8	
Fe	[%]	-	4,71	-	-	
Mn	[%]	0,012	0,05	0,011	0,017	
Cr	[mg/kg]	75,8	193	-	-	
Ti	[%]	0,252	0,71	0,247	0,31	
Ва	[%]	-	0,21	-	-	
Са	[%]	-	3,45	19,6	29,9	
К	[%]	-	2,68	0,005	0,48	
Cd	[mg/kg]	-	14,3	4,95	5,60	
S	[%]	0,319	1,37	-	0,32	
Р	[%]	-	0,20	-	0,03	
Si	[%]	1,33	14,8	7,74	13,3	
AI	[%]	0,04	11,0	8,57	10,4	
Mg	[%]	0,76	2,18	1,81	0,27	

MICROPARTICLE EMISSIONS

SO2 EMISSIONS

Content of waste in the fuel mixture [%]

NO_x EMISSIONS

CONCLUSIONS (STAGE 2)

• THE WASTE COULD BE AN ADDICTION FOR THE COAL,

- HIGHER EMISSIONS OF NO_x,
- REDUCTION OF SO₂ EMISSIONS,

 HIGHER CONCENTRATIONS OF PM 2,5 AND PM 10 IN THE EXHAUST GASES,

• THE WASTE COULD BE CO-COMBUSTED WITHOUT SIGNIFICANT POLLUTION ENHANCEMENT, WHEN IT'S NOT EXCEEDING THE 35-50% OF FUEL COMPOSITION.

CombustionCombustion combustionCombustion ombustionCombustion ombustionCombustion **combustionCombustion** OT HANKONYOU ON for your attention