LEATHER WASTE - FLUIDIZED BED COMBUSTION CHARACTERIZATION IN LABORATORY AND <u>DEMONSTRATION SCALE</u>

A. BAHILLO, A. CABANILLAS CIEMAT, Madrid, Spain 48th IEA-FBC, May, 24-25, 2004, Vienna, Austria

- Footwear leather wastes are formed mainly by proteins (80%) which are high molecular weight substances formed by amino acids. The amino acids are joined by condensation forming an union peptide (CO-NH-).
- Footwear leather wastes present fundamentally a problem due to the <u>geographical concentration of the sector</u> and to the <u>great volume of generated wastes</u>. Much of these wastes are throw away in landfills or they are uncontrolled incinerated, but these techniques are becoming increasingly expensive and restricted.

Europe is an important player in the international leather market

- About 25 % of the world's leather production

- Over 3.000 companies and some 50.000 people directly employed in the sector

- About 44.000 tonnes in footwear sector in 2000.

- Italy and Spain are the European countries that produce more wastes.

Dry and finished leather scraps produced by all industries – world wide basis

	t/year	%
Leather making	154.436	20.6
Gloves	28.423	3.8
Footwear	446.592	59.4
Leather goods	80.323	10.7
Garments	41.434	5.5
Total	751.209	100

Wastes generated by the footwear manufacturing - % of world area

LEATHER WASTE ANALYSIS

PROXIMATE ANALYSIS, %wt d.b.			
MOISTURE, a.r.	13.3		
VOLATILE MATTER	76.55		
ASH	5.25		
CARBON FIXED	18.2		
ULTIMATE ANALYSIS, %wt d.b.			
CARBON	54.9		
HYDROGEN	5.1		
SULPHUR	1.4		
OXYGEN	19.2		
NITROGEN	14.1		
CHLORINE	0.8		
CHROMIUM	3.2		
HHV, MJ/kg	19.6		
LHV, MJ/kg	18.3		
BULK DENSITY, kg/Nm ³	200		

DESIGN PARAMETERS

THERMAL POWER	3.6 MW
SECTION	4.5 m ²
COMBUSTION TEMPERATURE	850 ⁰c
FLUIDIZING VELOCITY	1.2 m/s
FEED RATE (biomass)	665 kg/h
STEAM FLOW RATE	3700 kg/ł
STEAM PRESSURE	30 Bares
STEAM TEMPERATURE	400°C

Operating Conditions

✓ Bed temperature (°C)	800 – 900
✓ Freeboard temperature (°C)	750 – 850
✓ Waste feed rate (kg/h)	450 – 700
Fluidising velocity (m/s)	0.8 – 1.2
∠ Excess air (%)	20 - 40
✓ Average waste particle size (mm)	5 – 15
✓ Static Bed height (mm)	300
Sand particle size (mm)	0.4 – 1

FLUE GASES EMISSIONS (I)

CO emissions depend on the bed temperature. Combustion efficiency increases slightly with the combustion temperature.

FLUE GASES EMISSIONS (II)

NO emissions and fuel-nitrogen conversion remained constant with the increase of temperature.

Formation and reduction reactions of NO are the same importance.

FLUE GASES EMISSIONS (III)

N₂O emission decreases with increasing temperature. Higher H* and OH* radical concentrations at higher temperatures. Thermal destruction of N₂O rises sharply with increasing temperature N₂O + H*, OH* \longrightarrow N₂ + OH*, HO₂*

FLUE GASES EMISSIONS (IV)

The global fuel-N conversion to N₂O and NOx was found to decrease very slightly with the temperature.

FLUE GASES EMISSIONS (V)

	050
Bed Temperature, °C	850
Freeboard Temp., °C	775
O ₂ (%)	6,0
$H_2O(\%)$	8,0
CO ₂ (%)	11,0
CO (mg/Nm ³)	100
SO ₂ (mg/Nm3)	2100
NO (mg/Nm ³)	1650
$NO_2 (mg/Nm^3)$	100
$N_2O(mg/Nm^3)$	100
$NH_3 (mg/Nm^3)$	1
HCl (mg/Nm ³)	11

ASH CHARACTERISATION (I)

SiO ₂ (%)	37,8
Cr ₂ O ₃ (%)	32,0
$Al_2O_3(\%)$	4,9
CaO (%)	4,2
P ₂ O ₅ (%)	3,7
$Na_2O(\%)$	3,2
K ₂ O (%)	1,8
Fe ₂ O ₃ (%)	1,5
MgO (%)	1,4
TiO ₂ (%)	1,2

The recovery of chromium (Cr₂O₃) from ashes produced in the combustion was difficult because chromium ashes were mixed mainly with silica coming from bed.

ASH CHARACTERISATION (II)

SiO₂ was mainly concentrated in bigger particles of 35 μ m, whereas Cr₂O₃ was found in smaller particles of 10 μ m.