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LEATHER WASTE - FLUIDIZED BED 
COMBUSTION CHARACTERIZATION IN 

LABORATORY AND DEMONSTRATION SCALE



INTRODUCTION

• Footwear leather wastes are formed mainly by proteins 
(80%) which are high molecular weight substances formed 
by amino acids. The amino acids are joined by condensation 
forming an union peptide (CO-NH-). 

• Footwear leather wastes present fundamentally a problem 
due to the geographical concentration of the sector and to 
the great volume of generated wastes. Much of these wastes 
are throw away in landfills or they are uncontrolled 
incinerated, but these techniques are becoming increasingly 
expensive and restricted. 





- About 25 % of the world’s leather production

- Over 3.000 companies and some 50.000 people 

directly employed in the sector 

- About 44.000 tonnes in footwear sector in 2000.

- Italy and Spain are the European countries that 

produce more wastes.

Europe is an important player in the international leather market
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Wastes generated by the footwear manufacturing -
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LEATHER WASTE ANALYSISLEATHER WASTE ANALYSIS
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OBJECTIVES

TO DEMONSTRATE THE TECHNICAL FEASIBILITY OF THE BFB 
AS A SUITABLE TECHNOLOGY TO DISPOSE OF THE WASTE

BASIC
STUDIES

PILOT PLANT
ENGINEERING

PILOT PLANT
TEST RUNS

ASH 
CHARACTERISATION

DEMONSTRATION 
SCALE

ENGINEERING

DEMONSTRATION 
SCALE

TEST RUNS

TO MAKE USE OF HEATING VALUE OF WASTES THROUGH
COMBUSTION
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THERMAL POWER 3.6 MW

SECTION 4.5 m2

COMBUSTION TEMPERATURE 850 ºc

FLUIDIZING VELOCITY 1.2 m/s

FEED RATE (biomass) 665 kg/h

STEAM FLOW RATE 3700 kg/h

STEAM PRESSURE 30 Bares

STEAM TEMPERATURE 400ºC

DESIGN PARAMETERS





?Bed temperature (ºC) 800 – 900

? Freeboard temperature (ºC) 750 – 850

?Waste feed rate (kg/h) 450 – 700

? Fluidising velocity (m/s) 0.8 – 1.2

?Excess air (%) 20 - 40

?Average waste particle size (mm) 5 – 15

?Static Bed height (mm) 300

?Sand particle size (mm) 0.4 – 1

Operating Conditions
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FLUE GASES EMISSIONS (I)

CO emissions depend on the bed temperature.
Combustion efficiency increases slightly with the 

combustion temperature. 



FLUE GASES EMISSIONS (II)
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NO emissions and fuel-nitrogen conversion remained constant with 
the increase of temperature. 

Formation and reduction reactions of NO are the same importance.



FLUE GASES EMISSIONS (III)
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N2O emission decreases with increasing temperature.
Higher H* and OH* radical concentrations at higher temperatures.

Thermal destruction of N2O rises sharply with increasing temperature
N2O + H*, OH*           N2 + OH*, HO2*



FLUE GASES EMISSIONS (IV)
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The global fuel-N conversion to N2O and NOx was found to 
decrease very slightly with the temperature.
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ASH CHARACTERISATION (I)

32,0Cr2O3 (%)

4,9Al2O3 (%)

4,2CaO (%)

3,7P2O5 (%)

3,2Na2O (%)

1,8K2O (%)

37,8SiO2 (%)

1,4MgO (%)

1,2TiO2 (%)

1,5Fe2O3 (%)

The recovery of chromium (Cr2O3) from ashes produced in the 
combustion was difficult because chromium ashes were mixed 

mainly with silica coming from bed.



ASH CHARACTERISATION (II)
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SiO2 was mainly concentrated in bigger particles of 35 µm, 
whereas Cr2O3 was found in smaller particles of 10 µm.


