

Mixing and flow structures in fluidized bed boilers

Filip Johnsson Department of Energy Conversion <u>fijo@entek.chalmers.se</u> +46 31 772 1449

47th IEA meeting on FBC, Technical meeting Zlotniki, Poland, October 13, 2003

CFB modelling

Overall flow picture – time average (as obtained from Chalmers 12 MW CFB boiler and cold units)

Inputs

- Geometry
- Solid properties (for each solid fraction)
- Operational conditions (u_0 , q_{sec} , Δp)
- Solids flux is an output!

Outputs

- Concentration and velocity of solids (location, size interval, solid fraction)
- Gas flows
- Mass, particle size distribution, pressure drop

	(IUCATION)				
	Flensburg 109 MW	,	RUN		
The Chalmers model	Geometry	Conditions Solids			
	Riser	Exit duct	Downcomer		
	Riser height: 28 [m]	Length: 3.36 [m]	Height: 1.65 [m]		
Graphical User Interface	Exit duct height: 23.7 [m]	Inlet area: 4.46 [m ²]	Cross sectional area 0.78 [m ²]		
(overna)	Secondary air height: 2.4 [m]				
(example)	Return leg height: 3.92 [m]	Cyclone	Particle seal		
	Feeding point height: 2.2 [m]	Inlet height: 4.2 [m]	Cross sectional area: 2.89 [m ²]		
		Inlet width: 1.92 [m]	Fluidized volume: 7.12 [m ³]		
	Height [m] Shape Length [m] Width [m] Diameter [m]	Core diameter: 7.26 [m]			
	9.1 Circular 4.75	Height: 12.88 [m]	Particle cooler		
	9.1 Rectangular 4.75 4.75	Gas outlet diameter: 3.3 [m]	Cross sectional area: [m ²]		
	12 Rectangular 5.1 5.1	Gas outlet penetration: 2.12 [m]	Fluidized volume: [m ³]		
	Top Rectangular 5.1 5.1	Number of cyclones: 1 []			
	Add cross section	Save geor	motry		

Example of results – the Chalmers model

Large fluctuations in gas flow

Exploding bubble regime – in Chalmers 12 MW_{th} boiler and cold u

"Transport conditions"

Understanding bottom region conditions important for modeling of entire CFB process

For design and scale up more information is needed, especially

- Lateral distribution (in large cross sections)
 - fuel,
 - gas concentrations
 - solids flux
- Dynamics
 - Solids flow
 - Gas flow and mixing
- ⇒ Measurements under full scale conditions needed.....

"CFB Combustors" 5th framework project, 2000 – 2003

Project consortium:

Chalmers University of Technology

(coordinator)

- 1. Technical University Hamburg-Harburg
- 2. Technical University of Czestochowa
- 3. Electrownia Turow (power plant company)
- 4. VSB-Technical University of Ostrava
- 5. Vattenfall Generation Services Thermal

5th framework project "CFB Combustors" Measurements in Turow 235 MW_e CFB boiler Objective

To provide data which can form a basis for modeling, reliable operation and scale-up of CFB combustors

• Data on horizontal distribution over the furnace crosssection of solids size-distribution, solids flux, solids momentum, solids-volume concentration, temperature and gas concentrations

• Data on dynamic response to load changes

- Description of measurement techniques
- Bottom bed properties

Please note: work in progress

The Turow 235MW_{th} CFB BoilerFurnace

height 42.5 m cross-section of 21.1 m x 9.9 r 25 measurement ports 25 pressure taps

Fuel feed distribution

Measurement probes

- \bullet Gas suction probes (SO_2, NO, NO_2, CO, CO_2, O_2, CO, CH_{tot} and H_2O)
- Solids sampling probe
- Momentum probes
- Dual pressure probe
- Capacitance probe

All have a rectangular cross section of 20 x 50 mm with lengths of 3.7 m (4.5 m momentum probe) and 2.7 m

Ports and probes Hole in the membrane tube-wall

and

port equipped with insertion element

A port equipped with high-precision guidance and with a gas suction probe inserted

The solids momentum probe

Needle-type capacitance probe

Chalmers University of Technology

Capacitance probe (TUHH)

Momentum probe

- Measures differential pressure, Δp_m , between upward and downward pointing pressure taps (down- and upmoving particles respectively). Δp_m also called impact pressure.

$$\Delta p_{m} = \alpha G_{s} U_{p} + k = \frac{\alpha G_{s}^{2}}{\rho_{s} c_{s}} + k \qquad \left(\frac{N}{m^{2}}, \frac{kg}{ms^{2}}\right) \text{ and } U_{p} = \frac{G_{s}}{\rho_{p} c_{s}}$$

where α and *k* are constants

- Dynamics and statistics of local solids flux in vertical direction

Chalmers University of Technology

Solids momentum probe for dynamics of solids flux

Chalmers University of Technology

Dual pressure probe for solids velocity measurements

Example of results (- dynamics of solids flow) - bottom region characteristics

Momentum flux in furnace

Vertical changes in profiles of net impact pressure

Solids velocity from dual pressure probe

Solids velocity from dual pressure probe

To detect **bottom region** conditions: pressure taps and/or measurement ports in lower region of furnace

Boiler	No. of pressure taps*	No. of meas. ports	Vertical positions of the lowest pressure taps [m]	Vertical positions of the lowest meas. port [m]
Chalmers	32	36	0.1-0.17	0.26
Chatham	-	2	-	5.1
Flensbur	8	2	0.2-3.7	17.3
Örebro	-	5	-	18.5
Duisburg	10	5	0.2-2.0	8.6
E.	12	1	1.0-1.5	13.8
Gardann	7	2	0.03-0.20	~1
Turow	25	25	0.25-0.52	0.8

Regimes found in a 0.7x0.12x8.5 m riser

Bottom bed voidage

(Only conditions with presence of bottom bed shown for Chalmers boiler and cold

Operation with no bottom bed - "transport conditions"

$$u_0$$
, ΔP_0 , $d_p \rightarrow u^{\uparrow}$, ΔP_0 ,

Temperature > 980 °C at several locations

Conclusions

- In-situ measurement techniques were successfully applied to study infurnace processes in the 235 MW_e Circulating Fluidized Bed boiler
- Results illustrate the complex dynamics of the in-furnace flow and mixing with pronounced lateral variations in gas concentrations over the furnace cross section. In particular:
 - strong downflow of solids near the wall
 - temperatures at the wall (< 0. 1 m) are much lower than temperatures inside the boiler
 - average solids concentration in bottom region lower than what correspond to previously observed observations
 - high temperatures observed related to low solids inventory?
 - boiler temperatures for control purposes are measured within wall layer/zone
 - oxygen-depleted wall region with thickness of 0.5 m
 - differences in O₂ between front and rear wall indicate that lateral ash flow brings fuel deeper into the combustion chamber and thus helps to avoid the formation of plumes

Acknowledgements

- Turow highly professional planning of measurement program. Experiments started same day as planned, in spite of planning phase of one year
- European commission