Czestochowa University of Technology **Poland**

Turow Power Plant S.A.

Sulfur capture in a 235 MW
CFB boiler by mechanical
activation of sorbents

Prof. Wojciech NOWAK

47th IEA Meeting, Złotniki Lubańskie, 2003

Polish utility power plants

Polish CFB power dimension

- Largest CFB market in Europe
- Pionier in supercritical OTH CFB boiler
- Extensive experience and knowledge
- Wide range of fuels
- Cofiring coal with slurry, biomass, animal wastes
- Very good emission performance
- Ambitious programs undertaken by power plants and universities
- CFB biomass/ waste gasification new challenge

Commercial CFB boilers in Poland

OWNER/LOCATION	YEAR	ТҮРЕ	CAPACITY	FUELS
Turow Power Plant S.A.	1998	CFBC Unit 1 and 2 Hot cyclones	2 x 235 MWe	Brown coal, Lignite
Turow Power Plant S.A.	2000	CFBC Unit 3 Hot cyclones	235 MWe	Brown coal, Lignite
Turow Power Plant S.A.	2002-2004	CFBC Units 4, 5 & 6 Hot cyclones	3 x 260 MWe	Brown coal, Lignite
EC Katowice S.A.	2000	CFBC Steam-cooled cyclone	120 MWe	Bituminous coal, coal slurry
Power Plant PSE Jaworzno II S.A.	1999	CFBC Units 1 & 2 Compact CFB	2 x 70 MWe	Bituminous coal, coal slurry
EC Chorzow Elcho	2003	CFBC Units 1 & 2 Compact CFB	2 x 113 MWe	Bituminous coal
EC Zeran, Warsaw	1997	CFBC Unit A Hot cyclones	315 MWe	Bituminous coal
EC Zeran, Warsaw	2001	CFBC Unit B Steam-cooled cyclone	315 MWe	Bituminous coal
EC Bielsko-Biala	1997	CFBC Hot cyclones	177/165 MWe	Bituminous coal
Polpharma Starogard Gdański	1993	CFBC Hot cyclones	2 x 60.2 MWe	Bituminous coal
EC Tychy	1999	CFBC Cymic Internal cyclone	37 MWth electricity 70 MWth dictric heat	Bituminous coal
EC Ostroleka	1997	BFBC bubbling type	30 MWth	Bark, paper waste
EC Siersza	2001, 2003	CFBC Units 1 & 2 Hot cyclones	2 x 338.5 MWth	Bituminous coal

UNITS 4-6 CFB COMPACT IN ELEKTROWNIA TURÓW

Comparison of parameters for CFB boilers (235-260 MW_e) and 460 MW_e CFB

Specification	Blocks with cyclones	Blocks 4-6 Compact	Block 460 MW
	CFB Turow	type	PKE S.A.
	No 1,2,3	Turow	Lagisza
Electric capacity, gross, MW _e	235	262	460
Live steam flow, kg/s	185.4	200	359.8
Live steam pressure at turbine inlet,	13.17	16.65	27.5
MPa			
Live steam temperature at turbine	540	565	560 (+ 5 /0)
inlet, °C			
RH steam temperature, °C	540	565	580
RH steam flow, kg/s	165.5	182	313.1
Cold reheat steam pressure, Mpa	2.8	4.2	5.3
Cold reheat steam temperature, °C	312	350	310.5
RH steam pressure at turbine inlet,	2.5	3.8	4.88
MPa			
Feed water temperature, °C	242.6	250	290
Flue gases outlet temperature, °C	157	138	122

460 MW_e CFB Efficiency (brutto) 47%

HEAD

Experience in the field of utilization of activated fly ash and sorbents in SO₂ capture in large-scale CFB boilers

Desulfurization efficiency at 235 MWe CFB boilers fired with brown coal

THE ADVERSE EFFECTS OF INCREASING Ca/S RATIO

Higher Ca/S ratio

Higher operation costs Higher NOx level Loss of combustion efficiency Increased ash disposal costs

Designs for Improving SO2 Removal

The following factors have their impact on obtaining higher levels of desulfurization efficiency:

- sorbent's granulation,
- sorbent's surface,
- amount of the active content,
- amount of inserted sorbent (mole ratio: Ca/S),
- time residence by sorbent in contact with combustion gas in a combustion chamber
- homogeneity of sorbent-combustion gas intermixity

DEVELOPMENT OF HIGH-REACTIVITY SORBENTS

Reactivity of the sorbent particles is an important parameter which dictates the effectiveness of sulfur capture in CFB boilers, similar to the other combustion technologies

SCHEMAT OF MODIFIED SORBENT PRODUCTION

Mechanical Activation

Patent number 180380 covers the technology and instalation for obtaining settings materials from CFB and PC boilers

PRINCIPLE OF MECHANICAL ACTIVATION

particle before activation

Activated particle after calcination

Activated particle after sulfation

activation

Addition of fluidized bed ashes to sorbent

Sorbent particles on fly ash surface

Results of mechanical activation

- Larger specific surface area
- Shifting pore volume distribution to smaller pores
- Increasing gel pores (<10 nm)</p>
- Formation of defects
- Fragmentation of aglomerates
- Desintagration of metakaloinite
- Spheroidizing CFB ash particles
- Separation of activated material from unactivated due to electrostatic charge on the surface

Activator elements capacity 3 t/h

Frame cover

Activating chamber

Rotor

CFB ash utilization: pilot plant at Turow Power Plant

MOVEMENT OF ACTIVATED PARTICLES

Velocity Vectors Colored By Velocity Magnitude (m/s)

Jun 17, 2003 FLUENT 6.1 (3d, segregated, rngke)

Velocity Vectors Colored By Velocity Magnitude (m/s)

Jun 17, 2003 FLUENT 6.1 (3d, segregated, rngke)

Particle Traces Colored by Particle Residence Time (s)

FLUENT 6.1 (3d, segregated, make)

Activator 5 t/h

TECHNICAL UNIVERSITY OF CZESTOCHOWA

DEPARTMENT OF HEATING, VENTILATION AND AIR PROTECTION

Determination of the limestone reactivity should be somehow standardized and more uniform for all CFB boilers RI stands for Ca/S molar ratio, which shows the amount of Ca before the test, and the amount of sulphur after. CI is defined as amount of sulphur (in grams), absorbed by kilogram of tested calcium

Reactivity Index and Sorption

Reactivity test	RI	CI	
excellent	< 2,5	> 120	
very good	2,5 - 3,0	100 -120	
good	3,0 - 4,0	80 - 100	
sufficient	4,0 - 5,0	60 - 80	
low quality	> 5,0	< 60	

TECHNICAL UNIVERSITY OF CZESTOCHOWA

DEPARTMENT OF HEATING, VENTILATION AND AIR PROTECTION

Test unit

rodzaj sorbentu

Conversion

LIMESTONE SIZE DISTRIBUTION FOR CFB BOILERS

Since the limestone size distribution has a very important influence on the desulfurization efficiency, it has to be as close to the provided by supplier curves as possible. In our opinion the required characteristic is too restrictive and mill producers are not able to comply with such requirements in the full range.

LIMESTONE EFFICIENCY CONVERSION

Conversion is improved when size of the limestone particles is reduced – a process that takes place naturally in the CFB boiler

Uziarnienie CaCO₃ w [µm]

Cyclone inlet modification

Solids concentration

Before modification

After modification

Contours of DPM Concentration (kg/m3)

Cyclone inlet

Pilot plant installation at the Turow Power Plant

Sorbent activation in a 235 MW CFB boiler at Turow Power Plant

Installation for production of high-reactive sorbents

Performance tests

- Stable boiler operation
- 26% sorbent consumption reduction at 100% MCR and 26.3% at 80% MCR
- 99.2% availability
- Lower SO₂ and NO_x