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Summary 
 

The presentation introduces two novel bench-scale reactors for studying trace element behaviour 
in combustion systems. The first is a “suspension-firing” reactor designed to monitor trace 
element release during solid fuel combustion under conditions relevant to fluidised bed 
combustors. The new design (Figures 1-6) allows the examination of fuel particle combustion in 
the absence of bed solids. Preliminary experiments presented using two coals, a sample of wood 
bark and one of straw (Tables 1 and 2). Ash from the reactor walls and base have been analysed 
separately from ash collected on a sintered disc in the path of exit gas. Trace element 
concentrations in these samples were analysed by Inductively Coupled Plasma (ICP)-mass 
spectrometry and ICP-atomic emission spectrometry (AES). The fractions of original trace 
elements retained by the ash have been reported, together with the relative enrichment in the 
“sinter-ash” compared to “bottom ash”. Data for a range of elements are presented in Figures 6 –
13). Mercury was almost completely volatilised from all fuels, as was selenium for all except 
wood-bark. Chromium, manganese and thallium were partially volatilised and nickel mostly 
retained in all samples. The behaviour of beryllium, lead, molybdenum, vanadium and zinc varied, 
depending on the fuel sample.  Beryllium was released to a greater extent from coal/straw than the 
other fuels. Vanadium was partially volatilised from wood-bark and coal/straw, while the largest 
proportion of the zinc released was from the wood-bark. Lead and molybdenum were retained to a 
greater extent by ‘Colombian coal’ and wood-bark respectively. Evidence of the enrichment of 
certain trace elements on the finer “sinter-ash” particles has also been observed, e.g. for As, Cd, 
Pb and Tl during the combustion of the ‘Colombian-coal’. Comparison with data collected by 
project partners, using pilot and full-scale equipment, is very encouraging. This suggests that the 
suspension-firing reactor is a promising small-scale devise for screening novel fuel blends and 
mixtures in terms of potential release of trace elements during combustion. (see also FUEL 81, 
(2002), 159-171). 
 
The second reactor has been designed to study the capture of volatilised trace elements in a range 
of sorbents, relevant to both combustion and gasification processes. The all-quartz reactor (Fig.01) 
is made in three parts; a generation section, situated above a high temperature sorbent bed, which 
is situated, in turn, above an ambient temperature sorbent bed. The upper, generation section is 
housed within an electric furnace normal run at 1000 ºC; here the trace element of interest (either 
the element or a simple compound – see Fig.02) is volatilised and passed in nitrogen carrier gas 
through the two sorbent beds in series. The high temperature sorbent bed is located within a 
second electric furnace; temperatures of 300, 450 and 600ºC have been tested. Meta-kaolin and 
activated carbon have been tested as sorbents for a range of elements including Hg, Se, Cd, Pb, 
Sb, As and V. The percentage weight of the volatilised element that is captured by the two beds is 
reported (at three different test temperatures for the high temperature bed) – see Fig.03-06. 
Significant differences in behaviour are apparent for the various element tested. The kaolin 
sorbent seems successful for elements such as As and Pb but not for Hg. However, the active 
carbon was found to be partially successful for Hg. In a second set of experiments (Fig.07), 
leaching tests were made on sorbent contaminated with various trace elements. This is relevant to 
understanding of possible disposal options for spent sorbent. Clear evidence of the sensitivity of 
water leachability to the sorbent bed temperature was evident. The work to date suggests that the 
novel reactor is a very useful, low cost, devise for studying the potential of sorbents for selective 
capture of trace elements. 
 
* Corresponding author: d.dugwell@ic.ac.uk 
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Figure 1 The suspension-firing reactor 
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Figure 2 Calibration of Fuel Feeding System 
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Figure 3 Sintered Quartz Plate and Top Closure Details 
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Figure 4 Particle Size Distributions of Sinter and Bottom Ash 
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Figure 5 Axial Temperature Distribution at Reactor Centre and Walls, Without Fuel, 800 
and 900°C 
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Figure 6 Axial Temperature Distribution inside the Reactor  
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Table 1 Major and Minor Constituents of the Fuel Samples 

 Wood-
Bark 

Straw Colombian 
Coal 

Polish 
Coal 

Major Elements % dry ash free
C 53.1 49.3 80.6 85.0

H 6.0 6.1 5.3 4.8

N 0.5 0.7 1.6 1.2

O (by diff) 40.3 43.4 11.5 7.9

S 0.07 0.15 0.90 0.84

Cl 0.01 0.26 0.04 0.11

 % as received

Ash 6.9 2.8 6.2 16.2

Moisture 3.0 8.7 7.9 2.9

Minor Elements g/kg as received

Na 1.4 0.1 0.2 0.7

K 2.3 8.9 0.9 2.9

Mg 0.8 0.4 0.5 3.1

Ca 8.0 1.8 0.7 4.9

Al 3.0 0.2 5.7 16.1

Fe 1.5 0.2 2.8 7.5

P 0.04 0.07 0.01 0.02
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Table 2 Raw Fuel Trace Element Contents 

 Wood-Bark Straw Colombian 
Coal 

Polish Coal 

Trace Elements ppm as received 
Asb 0.44 <0.10 1.72 1.83 

Be 0.07 <0.10 0.40 1.30 

Cd 0.20 <0.15 0.30 0.21 

Cr 26.0 2.49 11.1 24.3 

Cu 87.3 3.16 5.78 24.8 

Hga 0.034 0.009 0.031 0.058 

Mn 414 20.4 27.2 176 

Mo 1.26 0.42 1.51 0.98 

Ni 10.0 0.90 6.51 17.3 

Pb 3.06 2.64 1.94 33.8 

Seb <0.80 <0.20 4.32 2.43 

Tl 0.086 0.002 0.11 0.33 

V 2.81 0.82 11.8 24.3 

Zn 150 30.9 17.6 43.6 
a AAS with LECO Hg analyser 
b ICPMS of microwave digestion 
 
 
 
 
 

 

 

 
 

 
 

 

 

 

 9



0

20

40

60

80

100

120

As Cd Hg Se Pb

Pe
rc

en
ta

ge
 R

et
en

tio
n 

(%
)

0

20

40

60

80

100

120

As Cd Hg Se Pb

Pe
rc

en
ta

ge
 R

et
en

tio
n 

(%
)

Wood/Bark Colombian Coal - Straw Colombian Coal Polish Coal
 

Figure 7 Percentage Retention of As, Cd, Hg, Se and Pb  
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Figure 8 Enrichment of As, Cd, Hg, Se and Pb on Sinter Ash 
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Figure 9 Percentage Retention of Cu, Cr, Ni, V and Zn 
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Figure 10 Enrichment of Cu, Cr, Ni, V and Zn on Sinter Ash 
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Figure 11 Percentage Retention of Be, Mn, Mo and Tl 
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Figure 12 Enrichment of Be, Mn, Mo and Tl on Sinter Ash 



List of compounds selected for each of the elements likely to 
be formed by heating each compound in the HGCU reactor

Element Compound selected Vapours likely to be
formed in the HGCU

reactor

Arsenic (As) As2O3 As2O3 (and possibly AsO)

Cadmium (Cd) CdCl2 CdCl2

Gallium (Ga) Ga(NO3)3.3H2O Gallium oxides (possibly
Ga2O)

Mercury (Hg) HgO Hg

Lead (Pb) PbCl2 PbCl2

Antimony (Sb) SbCl3 SbCl3

Selenium (Se) SeO2 SeO2

Vanadium (V) VOF3(H2O)2.2H2O V2O5



Kaolin efficiency to retain arsenic at various temperatures



Activated carbon efficiency to retain mercury at various temperatures



Kaolin efficiency to retain mercury at various temperatures



Arsenic Retention on Carbon



Arsenic Leachability from Carbon
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